# # Copyright 2024 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import copy import re from api.db import ParserType from io import BytesIO from rag.nlp import rag_tokenizer, tokenize, tokenize_table, add_positions, bullets_category, title_frequency, tokenize_chunks, docx_question_level from deepdoc.parser import PdfParser, PlainParser from rag.utils import num_tokens_from_string from deepdoc.parser import PdfParser, ExcelParser, DocxParser from docx import Document from PIL import Image class Pdf(PdfParser): def __init__(self): self.model_speciess = ParserType.MANUAL.value super().__init__() def __call__(self, filename, binary=None, from_page=0, to_page=100000, zoomin=3, callback=None): from timeit import default_timer as timer start = timer() callback(msg="OCR is running...") self.__images__( filename if not binary else binary, zoomin, from_page, to_page, callback ) callback(msg="OCR finished.") # for bb in self.boxes: # for b in bb: # print(b) print("OCR:", timer() - start) self._layouts_rec(zoomin) callback(0.65, "Layout analysis finished.") print("layouts:", timer() - start) self._table_transformer_job(zoomin) callback(0.67, "Table analysis finished.") self._text_merge() tbls = self._extract_table_figure(True, zoomin, True, True) self._concat_downward() self._filter_forpages() callback(0.68, "Text merging finished") # clean mess for b in self.boxes: b["text"] = re.sub(r"([\t  ]|\u3000){2,}", " ", b["text"].strip()) return [(b["text"], b.get("layout_no", ""), self.get_position(b, zoomin)) for i, b in enumerate(self.boxes)], tbls class Docx(DocxParser): def __init__(self): pass def get_picture(self, document, paragraph): img = paragraph._element.xpath('.//pic:pic') if not img: return None img = img[0] embed = img.xpath('.//a:blip/@r:embed')[0] related_part = document.part.related_parts[embed] image = related_part.image image = Image.open(BytesIO(image.blob)) return image def concat_img(self, img1, img2): if img1 and not img2: return img1 if not img1 and img2: return img2 if not img1 and not img2: return None width1, height1 = img1.size width2, height2 = img2.size new_width = max(width1, width2) new_height = height1 + height2 new_image = Image.new('RGB', (new_width, new_height)) new_image.paste(img1, (0, 0)) new_image.paste(img2, (0, height1)) return new_image def __call__(self, filename, binary=None, from_page=0, to_page=100000, callback=None): self.doc = Document( filename) if not binary else Document(BytesIO(binary)) pn = 0 last_answer, last_image = "", None question_stack, level_stack = [], [] ti_list = [] for p in self.doc.paragraphs: if pn > to_page: break question_level, p_text = 0, '' if from_page <= pn < to_page and p.text.strip(): question_level, p_text = docx_question_level(p) if not question_level or question_level > 6: # not a question last_answer = f'{last_answer}\n{p_text}' current_image = self.get_picture(self.doc, p) last_image = self.concat_img(last_image, current_image) else: # is a question if last_answer or last_image: sum_question = '\n'.join(question_stack) if sum_question: ti_list.append((f'{sum_question}\n{last_answer}', last_image)) last_answer, last_image = '', None i = question_level while question_stack and i <= level_stack[-1]: question_stack.pop() level_stack.pop() question_stack.append(p_text) level_stack.append(question_level) for run in p.runs: if 'lastRenderedPageBreak' in run._element.xml: pn += 1 continue if 'w:br' in run._element.xml and 'type="page"' in run._element.xml: pn += 1 if last_answer: sum_question = '\n'.join(question_stack) if sum_question: ti_list.append((f'{sum_question}\n{last_answer}', last_image)) tbls = [] for tb in self.doc.tables: html= "" for r in tb.rows: html += "" i = 0 while i < len(r.cells): span = 1 c = r.cells[i] for j in range(i+1, len(r.cells)): if c.text == r.cells[j].text: span += 1 i = j i += 1 html += f"" if span == 1 else f"" html += "" html += "
{c.text}{c.text}
" tbls.append(((None, html), "")) return ti_list, tbls def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, **kwargs): """ Only pdf is supported. """ pdf_parser = None doc = { "docnm_kwd": filename } doc["title_tks"] = rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", doc["docnm_kwd"])) doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"]) # is it English eng = lang.lower() == "english" # pdf_parser.is_english if re.search(r"\.pdf$", filename, re.IGNORECASE): pdf_parser = Pdf() if kwargs.get( "parser_config", {}).get( "layout_recognize", True) else PlainParser() sections, tbls = pdf_parser(filename if not binary else binary, from_page=from_page, to_page=to_page, callback=callback) if sections and len(sections[0]) < 3: sections = [(t, l, [[0] * 5]) for t, l in sections] # set pivot using the most frequent type of title, # then merge between 2 pivot if len(sections) > 0 and len(pdf_parser.outlines) / len(sections) > 0.1: max_lvl = max([lvl for _, lvl in pdf_parser.outlines]) most_level = max(0, max_lvl - 1) levels = [] for txt, _, _ in sections: for t, lvl in pdf_parser.outlines: tks = set([t[i] + t[i + 1] for i in range(len(t) - 1)]) tks_ = set([txt[i] + txt[i + 1] for i in range(min(len(t), len(txt) - 1))]) if len(set(tks & tks_)) / max([len(tks), len(tks_), 1]) > 0.8: levels.append(lvl) break else: levels.append(max_lvl + 1) else: bull = bullets_category([txt for txt, _, _ in sections]) most_level, levels = title_frequency( bull, [(txt, l) for txt, l, poss in sections]) assert len(sections) == len(levels) sec_ids = [] sid = 0 for i, lvl in enumerate(levels): if lvl <= most_level and i > 0 and lvl != levels[i - 1]: sid += 1 sec_ids.append(sid) # print(lvl, self.boxes[i]["text"], most_level, sid) sections = [(txt, sec_ids[i], poss) for i, (txt, _, poss) in enumerate(sections)] for (img, rows), poss in tbls: if not rows: continue sections.append((rows if isinstance(rows, str) else rows[0], -1, [(p[0] + 1 - from_page, p[1], p[2], p[3], p[4]) for p in poss])) def tag(pn, left, right, top, bottom): if pn + left + right + top + bottom == 0: return "" return "@@{}\t{:.1f}\t{:.1f}\t{:.1f}\t{:.1f}##" \ .format(pn, left, right, top, bottom) chunks = [] last_sid = -2 tk_cnt = 0 for txt, sec_id, poss in sorted(sections, key=lambda x: ( x[-1][0][0], x[-1][0][3], x[-1][0][1])): poss = "\t".join([tag(*pos) for pos in poss]) if tk_cnt < 32 or (tk_cnt < 1024 and (sec_id == last_sid or sec_id == -1)): if chunks: chunks[-1] += "\n" + txt + poss tk_cnt += num_tokens_from_string(txt) continue chunks.append(txt + poss) tk_cnt = num_tokens_from_string(txt) if sec_id > -1: last_sid = sec_id res = tokenize_table(tbls, doc, eng) res.extend(tokenize_chunks(chunks, doc, eng, pdf_parser)) return res if re.search(r"\.docx$", filename, re.IGNORECASE): docx_parser = Docx() ti_list, tbls = docx_parser(filename, binary, from_page=0, to_page=10000, callback=callback) res = tokenize_table(tbls, doc, eng) for text, image in ti_list: d = copy.deepcopy(doc) d['image'] = image tokenize(d, text, eng) res.append(d) return res else: raise NotImplementedError("file type not supported yet(pdf and docx supported)") if __name__ == "__main__": import sys def dummy(prog=None, msg=""): pass chunk(sys.argv[1], callback=dummy)