# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import copy import re from io import BytesIO from xpinyin import Pinyin import numpy as np import pandas as pd from openpyxl import load_workbook from dateutil.parser import parse as datetime_parse from api.db.services.knowledgebase_service import KnowledgebaseService from rag.nlp import rag_tokenizer, is_english, tokenize, find_codec from deepdoc.parser import ExcelParser class Excel(ExcelParser): def __call__(self, fnm, binary=None, from_page=0, to_page=10000000000, callback=None): if not binary: wb = load_workbook(fnm) else: wb = load_workbook(BytesIO(binary)) total = 0 for sheetname in wb.sheetnames: total += len(list(wb[sheetname].rows)) res, fails, done = [], [], 0 rn = 0 for sheetname in wb.sheetnames: ws = wb[sheetname] rows = list(ws.rows) if not rows:continue headers = [cell.value for cell in rows[0]] missed = set([i for i, h in enumerate(headers) if h is None]) headers = [ cell.value for i, cell in enumerate( rows[0]) if i not in missed] if not headers:continue data = [] for i, r in enumerate(rows[1:]): rn += 1 if rn - 1 < from_page: continue if rn - 1 >= to_page: break row = [ cell.value for ii, cell in enumerate(r) if ii not in missed] if len(row) != len(headers): fails.append(str(i)) continue data.append(row) done += 1 res.append(pd.DataFrame(np.array(data), columns=headers)) callback(0.3, ("Extract records: {}~{}".format(from_page + 1, min(to_page, from_page + rn)) + ( f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else ""))) return res def trans_datatime(s): try: return datetime_parse(s.strip()).strftime("%Y-%m-%d %H:%M:%S") except Exception as e: pass def trans_bool(s): if re.match(r"(true|yes|是|\*|✓|✔|☑|✅|√)$", str(s).strip(), flags=re.IGNORECASE): return "yes" if re.match(r"(false|no|否|⍻|×)$", str(s).strip(), flags=re.IGNORECASE): return "no" def column_data_type(arr): arr = list(arr) uni = len(set([a for a in arr if a is not None])) counts = {"int": 0, "float": 0, "text": 0, "datetime": 0, "bool": 0} trans = {t: f for f, t in [(int, "int"), (float, "float"), (trans_datatime, "datetime"), (trans_bool, "bool"), (str, "text")]} for a in arr: if a is None: continue if re.match(r"[+-]?[0-9]+(\.0+)?$", str(a).replace("%%", "")): counts["int"] += 1 elif re.match(r"[+-]?[0-9.]+$", str(a).replace("%%", "")): counts["float"] += 1 elif re.match(r"(true|yes|是|\*|✓|✔|☑|✅|√|false|no|否|⍻|×)$", str(a), flags=re.IGNORECASE): counts["bool"] += 1 elif trans_datatime(str(a)): counts["datetime"] += 1 else: counts["text"] += 1 counts = sorted(counts.items(), key=lambda x: x[1] * -1) ty = counts[0][0] for i in range(len(arr)): if arr[i] is None: continue try: arr[i] = trans[ty](str(arr[i])) except Exception as e: arr[i] = None # if ty == "text": # if len(arr) > 128 and uni / len(arr) < 0.1: # ty = "keyword" return arr, ty def chunk(filename, binary=None, from_page=0, to_page=10000000000, lang="Chinese", callback=None, **kwargs): """ Excel and csv(txt) format files are supported. For csv or txt file, the delimiter between columns is TAB. The first line must be column headers. Column headers must be meaningful terms inorder to make our NLP model understanding. It's good to enumerate some synonyms using slash '/' to separate, and even better to enumerate values using brackets like 'gender/sex(male, female)'. Here are some examples for headers: 1. supplier/vendor\tcolor(yellow, red, brown)\tgender/sex(male, female)\tsize(M,L,XL,XXL) 2. 姓名/名字\t电话/手机/微信\t最高学历(高中,职高,硕士,本科,博士,初中,中技,中专,专科,专升本,MPA,MBA,EMBA) Every row in table will be treated as a chunk. """ if re.search(r"\.xlsx?$", filename, re.IGNORECASE): callback(0.1, "Start to parse.") excel_parser = Excel() dfs = excel_parser( filename, binary, from_page=from_page, to_page=to_page, callback=callback) elif re.search(r"\.(txt|csv)$", filename, re.IGNORECASE): callback(0.1, "Start to parse.") txt = "" if binary: encoding = find_codec(binary) txt = binary.decode(encoding, errors="ignore") else: with open(filename, "r") as f: while True: l = f.readline() if not l: break txt += l lines = txt.split("\n") fails = [] headers = lines[0].split(kwargs.get("delimiter", "\t")) rows = [] for i, line in enumerate(lines[1:]): if i < from_page: continue if i >= to_page: break row = [l for l in line.split(kwargs.get("delimiter", "\t"))] if len(row) != len(headers): fails.append(str(i)) continue rows.append(row) callback(0.3, ("Extract records: {}~{}".format(from_page, min(len(lines), to_page)) + ( f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else ""))) dfs = [pd.DataFrame(np.array(rows), columns=headers)] else: raise NotImplementedError( "file type not supported yet(excel, text, csv supported)") res = [] PY = Pinyin() fieds_map = { "text": "_tks", "int": "_long", "keyword": "_kwd", "float": "_flt", "datetime": "_dt", "bool": "_kwd"} for df in dfs: for n in ["id", "_id", "index", "idx"]: if n in df.columns: del df[n] clmns = df.columns.values txts = list(copy.deepcopy(clmns)) py_clmns = [ PY.get_pinyins( re.sub( r"(/.*|([^()]+?)|\([^()]+?\))", "", str(n)), '_')[0] for n in clmns] clmn_tys = [] for j in range(len(clmns)): cln, ty = column_data_type(df[clmns[j]]) clmn_tys.append(ty) df[clmns[j]] = cln if ty == "text": txts.extend([str(c) for c in cln if c]) clmns_map = [(py_clmns[i].lower() + fieds_map[clmn_tys[i]], str(clmns[i]).replace("_", " ")) for i in range(len(clmns))] eng = lang.lower() == "english" # is_english(txts) for ii, row in df.iterrows(): d = { "docnm_kwd": filename, "title_tks": rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", filename)) } row_txt = [] for j in range(len(clmns)): if row[clmns[j]] is None: continue if not str(row[clmns[j]]): continue if pd.isna(row[clmns[j]]): continue fld = clmns_map[j][0] d[fld] = row[clmns[j]] if clmn_tys[j] != "text" else rag_tokenizer.tokenize( row[clmns[j]]) row_txt.append("{}:{}".format(clmns[j], row[clmns[j]])) if not row_txt: continue tokenize(d, "; ".join(row_txt), eng) res.append(d) KnowledgebaseService.update_parser_config( kwargs["kb_id"], {"field_map": {k: v for k, v in clmns_map}}) callback(0.35, "") return res if __name__ == "__main__": import sys def dummy(prog=None, msg=""): pass chunk(sys.argv[1], callback=dummy)