Spaces:
Paused
Paused
zxsipola123456
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -40,49 +40,49 @@ async def text_to_speech_edge(text, language_code):
|
|
40 |
#out_wav = knn_vc.match(query_seq, matching_set, topk=4)
|
41 |
#torchaudio.save('output.wav', out_wav[None], 16000)
|
42 |
#return 'output.wav'
|
43 |
-
# def voice_change(audio_in, audio_ref):
|
44 |
-
# samplerate1, data1 = wavfile.read(audio_in)
|
45 |
-
# samplerate2, data2 = wavfile.read(audio_ref)
|
46 |
-
|
47 |
-
# with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_audio_in, \
|
48 |
-
# tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_audio_ref:
|
49 |
-
# audio_in_path = tmp_audio_in.name
|
50 |
-
# audio_ref_path = tmp_audio_ref.name
|
51 |
-
# write(audio_in_path, samplerate1, data1)
|
52 |
-
# write(audio_ref_path, samplerate2, data2)
|
53 |
-
|
54 |
-
# query_seq = knn_vc.get_features(audio_in_path)
|
55 |
-
# matching_set = knn_vc.get_matching_set([audio_ref_path])
|
56 |
-
# out_wav = knn_vc.match(query_seq, matching_set, topk=4)
|
57 |
-
# output_path = 'output.wav'
|
58 |
-
# torchaudio.save(output_path, out_wav[None], 16000)
|
59 |
-
# return output_path
|
60 |
-
|
61 |
def voice_change(audio_in, audio_ref):
|
62 |
samplerate1, data1 = wavfile.read(audio_in)
|
63 |
samplerate2, data2 = wavfile.read(audio_ref)
|
64 |
|
65 |
-
# 强制匹配音频文件的长度
|
66 |
-
max_length = max(data1.shape[0], data2.shape[0])
|
67 |
-
|
68 |
-
if data1.shape[0] < max_length:
|
69 |
-
data1 = np.pad(data1, (0, max_length - data1.shape[0]), mode='constant')
|
70 |
-
if data2.shape[0] < max_length:
|
71 |
-
data2 = np.pad(data2, (0, max_length - data2.shape[0]), mode='constant')
|
72 |
-
|
73 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_audio_in, \
|
74 |
tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_audio_ref:
|
75 |
audio_in_path = tmp_audio_in.name
|
76 |
audio_ref_path = tmp_audio_ref.name
|
77 |
-
|
78 |
-
|
79 |
|
80 |
query_seq = knn_vc.get_features(audio_in_path)
|
81 |
matching_set = knn_vc.get_matching_set([audio_ref_path])
|
82 |
out_wav = knn_vc.match(query_seq, matching_set, topk=4)
|
83 |
output_path = 'output.wav'
|
84 |
-
torchaudio.save(output_path,
|
85 |
return output_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
# 文字转语音(OpenAI)
|
87 |
def tts(text, model, voice, api_key):
|
88 |
if len(text) > 300:
|
|
|
40 |
#out_wav = knn_vc.match(query_seq, matching_set, topk=4)
|
41 |
#torchaudio.save('output.wav', out_wav[None], 16000)
|
42 |
#return 'output.wav'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
def voice_change(audio_in, audio_ref):
|
44 |
samplerate1, data1 = wavfile.read(audio_in)
|
45 |
samplerate2, data2 = wavfile.read(audio_ref)
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_audio_in, \
|
48 |
tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_audio_ref:
|
49 |
audio_in_path = tmp_audio_in.name
|
50 |
audio_ref_path = tmp_audio_ref.name
|
51 |
+
write(audio_in_path, samplerate1, data1)
|
52 |
+
write(audio_ref_path, samplerate2, data2)
|
53 |
|
54 |
query_seq = knn_vc.get_features(audio_in_path)
|
55 |
matching_set = knn_vc.get_matching_set([audio_ref_path])
|
56 |
out_wav = knn_vc.match(query_seq, matching_set, topk=4)
|
57 |
output_path = 'output.wav'
|
58 |
+
torchaudio.save(output_path, out_wav[None], 16000)
|
59 |
return output_path
|
60 |
+
|
61 |
+
# def voice_change(audio_in, audio_ref):
|
62 |
+
# samplerate1, data1 = wavfile.read(audio_in)
|
63 |
+
# samplerate2, data2 = wavfile.read(audio_ref)
|
64 |
+
|
65 |
+
# # 强制匹配音频文件的长度
|
66 |
+
# max_length = max(data1.shape[0], data2.shape[0])
|
67 |
+
|
68 |
+
# if data1.shape[0] < max_length:
|
69 |
+
# data1 = np.pad(data1, (0, max_length - data1.shape[0]), mode='constant')
|
70 |
+
# if data2.shape[0] < max_length:
|
71 |
+
# data2 = np.pad(data2, (0, max_length - data2.shape[0]), mode='constant')
|
72 |
+
|
73 |
+
# with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_audio_in, \
|
74 |
+
# tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_audio_ref:
|
75 |
+
# audio_in_path = tmp_audio_in.name
|
76 |
+
# audio_ref_path = tmp_audio_ref.name
|
77 |
+
# wavfile.write(audio_in_path, samplerate1, data1)
|
78 |
+
# wavfile.write(audio_ref_path, samplerate2, data2)
|
79 |
+
|
80 |
+
# query_seq = knn_vc.get_features(audio_in_path)
|
81 |
+
# matching_set = knn_vc.get_matching_set([audio_ref_path])
|
82 |
+
# out_wav = knn_vc.match(query_seq, matching_set, topk=4)
|
83 |
+
# output_path = 'output.wav'
|
84 |
+
# torchaudio.save(output_path, torch.tensor(out_wav)[None], 16000)
|
85 |
+
# return output_path
|
86 |
# 文字转语音(OpenAI)
|
87 |
def tts(text, model, voice, api_key):
|
88 |
if len(text) > 300:
|