import os import tempfile from openai import OpenAI from tts_voice import tts_order_voice import edge_tts import numpy as np import anyio import torch import torchaudio import gradio as gr from scipy.io import wavfile from scipy.io.wavfile import write # 创建 KNN-VC 模型 knn_vc = torch.hub.load('bshall/knn-vc', 'knn_vc', prematched=True, trust_repo=True, pretrained=True, device='cpu') # 初始化 language_dict language_dict = tts_order_voice # 异步文字转语音函数 async def text_to_speech_edge(text, language_code): voice = language_dict[language_code] communicate = edge_tts.Communicate(text, voice) with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file: tmp_path = tmp_file.name await communicate.save(tmp_path) return "语音合成完成:{}".format(text), tmp_path # 声音更改函数 #def voice_change(audio_in, audio_ref): #samplerate1, data1 = wavfile.read(audio_in) #samplerate2, data2 = wavfile.read(audio_ref) #write("./audio_in.wav", samplerate1, data1) #write("./audio_ref.wav", samplerate2, data2) #query_seq = knn_vc.get_features("./audio_in.wav") #matching_set = knn_vc.get_matching_set(["./audio_ref.wav"]) #out_wav = knn_vc.match(query_seq, matching_set, topk=4) #torchaudio.save('output.wav', out_wav[None], 16000) #return 'output.wav' def voice_change(audio_in, audio_ref): samplerate1, data1 = wavfile.read(audio_in) samplerate2, data2 = wavfile.read(audio_ref) with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_audio_in, \ tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_audio_ref: audio_in_path = tmp_audio_in.name audio_ref_path = tmp_audio_ref.name write(audio_in_path, samplerate1, data1) write(audio_ref_path, samplerate2, data2) query_seq = knn_vc.get_features(audio_in_path) matching_set = knn_vc.get_matching_set([audio_ref_path]) out_wav = knn_vc.match(query_seq, matching_set, topk=4) output_path = 'output.wav' torchaudio.save(output_path, out_wav[None], 16000) return output_path # def voice_change(audio_in, audio_ref): # samplerate1, data1 = wavfile.read(audio_in) # samplerate2, data2 = wavfile.read(audio_ref) # # 强制匹配音频文件的长度 # max_length = max(data1.shape[0], data2.shape[0]) # if data1.shape[0] < max_length: # data1 = np.pad(data1, (0, max_length - data1.shape[0]), mode='constant') # if data2.shape[0] < max_length: # data2 = np.pad(data2, (0, max_length - data2.shape[0]), mode='constant') # with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_audio_in, \ # tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_audio_ref: # audio_in_path = tmp_audio_in.name # audio_ref_path = tmp_audio_ref.name # wavfile.write(audio_in_path, samplerate1, data1) # wavfile.write(audio_ref_path, samplerate2, data2) # query_seq = knn_vc.get_features(audio_in_path) # matching_set = knn_vc.get_matching_set([audio_ref_path]) # out_wav = knn_vc.match(query_seq, matching_set, topk=4) # output_path = 'output.wav' # torchaudio.save(output_path, torch.tensor(out_wav)[None], 16000) # return output_path # 文字转语音(OpenAI) def tts(text, model, voice, api_key): if len(text) > 300: raise gr.Error('您输入的文本字符多于300个,请缩短您的文本') if api_key == '': raise gr.Error('请填写您的 中转API Key') try: client = OpenAI(api_key=api_key, base_url='https://lmzh.top/v1') response = client.audio.speech.create( model=model, voice=voice, input=text, ) except Exception as error: raise gr.Error(f"生成语音时出错:{error}") with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_file: temp_file.write(response.content) return temp_file.name # Gradio 前端设计 app = gr.Blocks() with app: gr.Markdown("#
OpenAI TTS + 3秒实时AI变声+需要使用中转key
") gr.Markdown("###
中转key购买地址https://buy.sipola.cn
") with gr.Tab("TTS"): with gr.Row(variant='panel'): api_key = gr.Textbox(type='password', label='API Key', placeholder='请在此填写您的API Key') model = gr.Dropdown(choices=['tts-1','tts-1-hd'], label='请选择模型(tts-1推理更快,tts-1-hd音质更好)', value='tts-1') voice = gr.Dropdown(choices=['alloy', 'echo', 'fable', 'onyx', 'nova', 'shimmer'], label='请选择一个说话人', value='alloy') with gr.Row(): with gr.Column(): inp_text = gr.Textbox(label="请填写您想生成的文本中英文皆可", placeholder="请输入ai生成的文案,不要超过300字,最好200字左右", lines=5) btn_text = gr.Button("一键开启真实拟声吧", variant="primary") with gr.Column(): inp1 = gr.Audio(type="filepath", label="OpenAI TTS真实拟声", interactive=False) inp2 = gr.Audio(type="filepath", label="请上传AI变声的参照音频(决定变声后的语音音色)") btn1 = gr.Button("一键开启AI变声吧", variant="primary") with gr.Column(): out1 = gr.Audio(type="filepath", label="AI变声后的专属音频") btn_text.click(tts, [inp_text, model, voice, api_key], inp1) btn1.click(voice_change, [inp1, inp2], out1) with gr.Tab("⚡ Edge TTS"): with gr.Row(): input_text = gr.Textbox(lines=5, placeholder="请输入ai生成的文案,不要超过300字,最好200字左右", label="请填写您想生成的文本中英文皆可") default_language = list(language_dict.keys())[15] language = gr.Dropdown(choices=list(language_dict.keys()), value=default_language, label="请选择文本对应的语言") btn_edge = gr.Button("一键开启真实拟声吧", variant="primary") output_text = gr.Textbox(label="输出文本", visible=False) output_audio = gr.Audio(type="filepath", label="Edge TTS真实拟声") with gr.Row(): inp_vc = gr.Audio(type="filepath", label="请上传AI变声的参照音频决定变声后的语音音色") btn_vc = gr.Button("一键开启AI变声吧", variant="primary") out_vc = gr.Audio(type="filepath", label="AI变声后的专属音频") btn_edge.click(lambda text, lang: anyio.run(text_to_speech_edge, text, lang), [input_text, language], [output_text, output_audio]) btn_vc.click(voice_change, [output_audio, inp_vc], out_vc) gr.Markdown("###
注意获取中转API Key [here](https://buy.sipola.cn).
") gr.Markdown("###
ai文案生成可使用中转key,请访问 [here](https://ai.sipola.cn).
") gr.HTML(''' ''') app.launch(show_error=True)