File size: 9,379 Bytes
57f11a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import sys
sys.path.append('./')
from adaface.adaface_wrapper import AdaFaceWrapper
import torch
from insightface.app import FaceAnalysis
from PIL import Image
import numpy as np
import random
import gradio as gr
import spaces
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--adaface_ckpt_path', type=str,
default='models/adaface/subjects-celebrity2024-05-16T17-22-46_zero3-ada-30000.pt')
parser.add_argument('--gpu', type=int, default=None)
parser.add_argument('--ip', type=str, default="0.0.0.0")
args = parser.parse_args()
# global variable
MAX_SEED = np.iinfo(np.int32).max
if torch.cuda.is_available():
device = "cuda" if args.gpu is None else f"cuda:{args.gpu}"
else:
device = "cpu"
dtype = torch.float16
# base_model_path is only used for initialization, not really used in the inference.
adaface = AdaFaceWrapper(pipeline_name="text2img", base_model_path="models/sar/sar.safetensors",
adaface_ckpt_path=args.adaface_ckpt_path, device=device)
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def swap_to_gallery(images):
# Update uploaded_files_gallery, show files, hide clear_button_column
# Or:
# Update uploaded_init_img_gallery, show init_img_files, hide init_clear_button_column
return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(value=images, visible=False)
def remove_back_to_files():
# Hide uploaded_files_gallery, show clear_button_column, hide files, reset init_img_selected_idx
# Or:
# Hide uploaded_init_img_gallery, hide init_clear_button_column, show init_img_files, reset init_img_selected_idx
return gr.update(visible=False), gr.update(visible=False), gr.update(value=None, visible=True)
def update_out_gallery(images):
#rows = (len(images) + 1) // 2 # Calculate the number of rows needed
return gr.update(height=600)
@spaces.GPU
def generate_image(image_paths, guidance_scale, adaface_id_cfg_scale,
num_images, prompt, negative_prompt, seed, progress=gr.Progress(track_tqdm=True)):
if image_paths is None or len(image_paths) == 0:
raise gr.Error(f"Cannot find any input face image! Please upload a face image.")
if prompt is None:
prompt = ""
adaface_subj_embs = \
adaface.generate_adaface_embeddings(image_folder=None, image_paths=image_paths,
out_id_embs_scale=adaface_id_cfg_scale, update_text_encoder=True)
if adaface_subj_embs is None:
raise gr.Error(f"Failed to detect any faces! Please try with other images")
generator = torch.Generator(device=device).manual_seed(seed)
print(f"Manual seed: {seed}")
# Generate two images each time for the user to select from.
noise = torch.randn(num_images, 3, 512, 512, device=device, generator=generator)
#print(noise.abs().sum())
# samples: A list of PIL Image instances.
samples = adaface(noise, prompt, negative_prompt, guidance_scale=guidance_scale, out_image_count=num_images, generator=generator, verbose=True)
return samples
### Description
title = r"""
<h1>AdaFace: A Versatile Face Encoder for Zero-Shot Diffusion Model Personalization</h1>
"""
description = r"""
<b>Official demo</b> for our NeurIPS 2024 submission <b>AdaFace: A Versatile Face Encoder for Zero-Shot Diffusion Model Personalization</b>.<br>
❗️**Tips**❗️
1. Upload one or more images of a person. If multiple faces are detected, we use the largest one.
2. Increase <b>AdaFace CFG Scale</b> (preferred) or <b>Guidance scale</b> and/or to highlight fine facial features.
3. AdaFace Text-to-Video: <a href="https://huggingface.co/spaces/adaface-neurips/adaface-animate" style="display: inline-flex; align-items: center;">
AdaFace-Animate
<img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-yellow" alt="Hugging Face Spaces" style="margin-left: 5px;">
</a>
**TODO**
- ControlNet integration.
"""
css = '''
.gradio-container {width: 85% !important}
'''
with gr.Blocks(css=css) as demo:
# description
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
with gr.Column():
# upload face image
# img_file = gr.Image(label="Upload a photo with a face", type="filepath")
img_files = gr.File(
label="Drag / Select 1 or more photos of a person's face",
file_types=["image"],
file_count="multiple"
)
uploaded_files_gallery = gr.Gallery(label="Subject images", visible=False, columns=3, rows=1, height=300)
with gr.Column(visible=False) as clear_button_column:
remove_and_reupload = gr.ClearButton(value="Remove and upload subject images", components=img_files, size="sm")
prompt = gr.Dropdown(label="Prompt",
info="Try something like 'man/woman walking on the beach'. If the face is not in focus, try adding 'face portrait of' at the beginning.",
value=None,
allow_custom_value=True,
filterable=False,
choices=[
"woman ((best quality)), ((masterpiece)), ((realistic)), long highlighted hair, futuristic silver armor suit, confident stance, high-resolution, living room, smiling, head tilted, perfect smooth skin",
"woman walking on the beach, sunset, orange sky",
"woman in a white apron and chef hat, garnishing a gourmet dish, full body view, long shot",
"woman dancing pose among folks in a park, waving hands",
"woman in iron man costume flying pose, the sky ablaze with hues of orange and purple, full body view, long shot",
"woman jedi wielding a lightsaber, star wars, full body view, eye level shot",
"woman playing guitar on a boat, ocean waves",
"woman with a passion for reading, curled up with a book in a cozy nook near a window",
"woman running pose in a park, eye level shot",
"woman in superman costume flying pose, the sky ablaze with hues of orange and purple, full body view, long shot"
])
submit = gr.Button("Submit", variant="primary")
negative_prompt = gr.Textbox(
label="Negative Prompt",
value="flaws in the eyes, flaws in the face, lowres, non-HDRi, low quality, worst quality, artifacts, noise, text, watermark, glitch, mutated, ugly, disfigured, hands, partially rendered objects, partially rendered eyes, deformed eyeballs, cross-eyed, blurry, mutation, duplicate, out of frame, cropped, mutilated, bad anatomy, deformed, bad proportions, nude, naked, nsfw, topless, bare breasts",
)
adaface_id_cfg_scale = gr.Slider(
label="AdaFace CFG Scale",
info="The CFG scale of the AdaFace ID embeddings (influencing fine facial features)",
minimum=0.5,
maximum=8.0,
step=0.5,
value=4.0,
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.5,
maximum=8.0,
step=0.5,
value=4.0,
)
num_images = gr.Slider(
label="Number of output images",
minimum=1,
maximum=6,
step=1,
value=4,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True, info="Uncheck for reproducible results")
with gr.Column():
out_gallery = gr.Gallery(label="Generated Images", columns=2, rows=2, height=600)
img_files.upload(fn=swap_to_gallery, inputs=img_files, outputs=[uploaded_files_gallery, clear_button_column, img_files])
remove_and_reupload.click(fn=remove_back_to_files, outputs=[uploaded_files_gallery, clear_button_column, img_files])
submit.click(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate_image,
inputs=[img_files, guidance_scale, adaface_id_cfg_scale, num_images, prompt, negative_prompt, seed],
outputs=[out_gallery]
).then(
fn=update_out_gallery,
inputs=[out_gallery],
outputs=[out_gallery]
)
demo.launch(share=True, server_name=args.ip, ssl_verify=False) |