tools / utils /gradio_utils.py
zzmez's picture
fix: Replace 'Aol' with 'Yahoo' in compute_offer function
ea9f5e6
raw
history blame
13.8 kB
import random
import ipaddress
import pandas as pd
import re
### SWAKS ###
def get_subclasses(ip_classes: str):
ip_classes = ip_classes.split('\n')
result = []
for ip_class in ip_classes:
try:
network = ipaddress.IPv4Network(ip_class, strict=False)
for ip in network.subnets(new_prefix=24):
result.append(str(ip))
except ValueError:
result.append(f"Invalid IP class: {ip_class}")
return result
def update_header(max_ips):
return f"found=0; max_ips={int(max_ips)};\n"
def str_to_list(ips_string) -> list:
"""
Converts a string to a list.
"""
return ips_string.split('\n')
def generate_cmds_from_bulk(big_subclasses_raw: str,
domain_raw: str,
max_ips: int = 2,
sample_size: int = 5):
"""
big_subclasses_raw: The list of classes
domain_raw: The list of domains
max_ips: The maximum number of IPs to pick
sample_size: The number of sample size to generate IPs from /24 class
"""
# Gradio fixes
# big_subclasses_raw = big_subclasses_raw.split('\n')
domain_raw = domain_raw.split('\n')
sample_size = int(sample_size)
max_ips = int(max_ips)
commands = []
header = f"found=0; max_ips={max_ips};"
for ip_subclass_24 in get_subclasses(big_subclasses_raw):
ip_addresses_1_20, ip_addresses_201_255 = generate_ip_addresses(ip_subclass_24)
commands.append(header)
for ip in random.sample(ip_addresses_1_20, sample_size):
commands.append(generate_randomized_output_max_ips(ip, domain_raw))
commands.append(header)
for ip in random.sample(ip_addresses_201_255, sample_size):
commands.append(generate_randomized_output_max_ips(ip, domain_raw))
return '\n'.join(commands)
def generate_ips_per_subclass(ip_subclasses: str, num_of_ips: int) -> str:
"""
Generates a list of IP addresses for a given list of IP subclasses and the number of IPs.
:param ip_subclasses: List of non /24 IP subclasses in CIDR notation.
:param num_of_ips: Number of IP addresses to generate per IP subclass.
:return: List of generated IP addresses.
"""
ip_addresses = []
for ip_subclass_24 in get_subclasses(ip_subclasses):
ip_addresses.extend(generate_ips_per_slash24(ip_subclass_24, num_of_ips))
return ip_addresses
def generate_ips_per_slash24(ip_class: str, num_ips: int) -> list:
"""
Generates a list of IP addresses within a specified class C network (/24).
:param ip_class: The IP class in CIDR notation, e.g., "192.168.1.1/24".
:param num_ips: The number of IP addresses to generate.
:return: A list of generated IP addresses.
"""
ip_addresses = []
# The IP address ranges for two disjoint domains.
domain1 = range(1, 20)
domain2 = range(201, 254)
num_ips = int(num_ips)
# The base of the IP address (e.g., "192.168.1." for "192.168.1.1/24").
base_ip = ip_class.split('/')[0].rsplit('.', 1)[0] + '.'
for i in range(1, num_ips + 1):
# If the index is in the first half of the requested IPs,
# generate an IP from the first domain.
if i <= num_ips / 2:
ip_addresses.append(base_ip +random.choice(domain1).__str__())
# If the index is in the second half of the requested IPs,
# generate an IP from the second domain.
else:
ip_addresses.append(base_ip +random.choice(domain2).__str__())
return ip_addresses
def generate_ip_addresses(slash_24: str) -> list:
ip_addresses_1_20 = []
ip_addresses_201_255 = []
# The IP address ranges for two disjoint domains.
domain_1_20 = range(1, 20)
domain_201_255 = range(201, 255)
# domain = chain(domain_1_20, domain_201_255)
# The base of the IP address (e.g., "192.168.1." for "192.168.1.1/24").
base_ip = slash_24.split('/')[0].rsplit('.', 1)[0] + '.'
for ip in domain_1_20:
ip_addresses_1_20.append(base_ip + ip.__str__())
for ip in domain_201_255:
ip_addresses_201_255.append(base_ip + ip.__str__())
return [ip_addresses_1_20, ip_addresses_201_255]
def generate_random_string(min_length=2, max_length=7):
letters = "abcdefghijklmnopqrstuvwxyz"
length = random.randint(min_length, max_length)
return ''.join(random.choice(letters) for _ in range(length))
def generate_randomized_output_max_ips(ip_address: str, domain_list: list, sleep_sec: int = 5) -> str:
part1 = generate_random_string()
part2 = generate_random_string()
part3 = generate_random_string()
part4 = generate_random_string()
# domain_list = domain_list.split('\n')
domain = random.choice(domain_list)
ip_class = ip_address.rsplit('.', 1)[0]
template = f"""if [ $found -lt $max_ips ]; then swaks -t [email protected] -h {part1}-{part2}.{part3}-{part4}.com -f from@{domain} -q from --li {ip_address} |\
tee -a swaks_full.log | \
grep -q 'sender ok'; \
if [ $? -eq 0 ]; \
then \
found=$((found+1)); \
echo {ip_address} >>bune_{ip_class}.txt; \
else echo {ip_address} >>blocate_{ip_class}.txt; \
fi; \
sleep {sleep_sec}; \
fi;"""
return template
### MIX ###
def mix(domains: str, ip_addresses: str, num_of_ips: int) -> str:
"""
Mixes the IP addresses with the domains.
:param ip_addresses: List of IP addresses.
:param domains: List of domains.
:return: List of mixed IP addresses and domains.
"""
domains = domains.split('\n')
ip_addresses = ip_addresses.split('\n')
mixed = []
# Check if the number of IP addresses is the same than the number of domains.
if len(ip_addresses) == len(domains):
for i in range(len(ip_addresses)):
if i % num_of_ips == 0:
mixed.append('')
line = domains[i] + ': ' + ip_addresses[i]
mixed.append(line)
else:
raise ValueError('The number of IP addresses and domains must be the same.')
return "\n".join(mixed)
# def generate_ips_per_subclass(ip_subclasses: str, num_of_ips: int) -> str:
# """
# Generates a list of IP addresses for a given list of IP subclasses and the number of IPs.
# :param ip_subclasses: List of non /24 IP subclasses in CIDR notation.
# :param num_of_ips: Number of IP addresses to generate per IP subclass.
# :return: List of generated IP addresses.
# """
# ip_addresses = []
# for ip_subclass_24 in get_subclasses(ip_subclasses):
# ip_addresses.extend(generate_ips_per_slash24(ip_subclass_24, num_of_ips))
# return ip_addresses
def generate_ips_per_subclass(ip_subclasses: str, num_of_ips: int) -> str:
"""
Generates a list of IP addresses for a given list of IP subclasses and the number of IPs.
:param ip_subclasses: List of non /24 IP subclasses in CIDR notation.
:param num_of_ips: Number of IP addresses to generate per IP subclass.
:return: List of generated IP addresses.
"""
ip_subclasses = ip_subclasses.split('\n')
ip_addresses = []
mask_split_threshold = 24
for ip_subclass in ip_subclasses:
ip_base, mask = ip_subclass.rsplit('/', 1)
mask = int(mask)
ip_base = ip_base.rsplit('.', 1)[0]
if mask == mask_split_threshold:
ip_addresses.extend(generate_ips_per_slash24(ip_subclass, num_of_ips))
else:
for i in range((mask_split_threshold - mask) ** 2):
split_ip_base = ip_base.split('.')
third_octet = int(split_ip_base[2]) + i
# Construct the /24 subnet for the IP subclass
ip_subclass_24 = split_ip_base[0] + '.' + split_ip_base[1] + '.' + str(third_octet) + '.0/24'
# Assuming generate_ips_per_slash24 is the same as the previously discussed generate_ips function
ip_addresses.extend(generate_ips_per_slash24(ip_subclass_24, num_of_ips))
return "\n".join(ip_addresses)
def _replace_numbers(input_string: str) -> str:
# Find the numbers before and inside the parentheses
match = re.search(r'(\d+)\s*\((\d+)\)', input_string)
if match:
# Replace the first set of numbers with the second set
replaced_string = input_string.replace(match.group(1), match.group(2), 1)
# Remove the parentheses and any surrounding whitespace
cleaned_string = re.sub(r'\(\d+\)', '', replaced_string).strip()
return cleaned_string
else:
return input_string
def _limit_chars(input_string: str, limit: int = 35) -> str:
return input_string[:limit]
### GENERATE TOP LISTS ###
def compute_offer(csv_file, days_lookback, min_sent, domain, team, offer_type, x_list, ):
pd.set_option('display.max_colwidth', 10)
df_all = pd.read_csv(csv_file.name, parse_dates=['Data'])
if team == "Team 1":
team_members = ['Ana Boros', 'Adrian Pop',
'Liviu Avram', 'Alexandru Popescu', 'Vlad Draghici']
elif team == "Team 2":
team_members = ['Cristi Rusu', 'Robert Rachiteanu', 'Adrian Sabau','Gabriel Sabau']
else:
team_members = [] # All
cols = ['Campanie', 'Oferta', 'Nume', 'Server', 'User', 'offer_id',
'Lista Custom', 'Data', 'HClicks', 'Clicks', 'Unscribers', 'Openers',
'Click Open', 'Leads', 'CLike', 'Complains', 'Traps', 'Send', 'ECPM', 'Comision', 'Domeniu']
df_all['offer_id'] = df_all['Nume'].str.extract(r'(\d{3,4}$)')
# Treat Aol as Yahoo
df_all['Domeniu'].replace('Aol', 'Yahoo', inplace=True)
if offer_type == "Offers - IDs only" or offer_type == "Offers":
exclude_list = df_all[(df_all['Data'] > (pd.Timestamp('now') - pd.Timedelta(days=days_lookback))) \
& (df_all['Domeniu'] == domain)\
& (df_all['User'].isin(team_members))]['offer_id'].unique()
df_all = df_all[~df_all['offer_id'].isin(exclude_list)]
elif offer_type == "Newsletters":
exclude_list = df_all[(df_all['Data'] > (pd.Timestamp('now') - pd.Timedelta(days=days_lookback))) \
& (df_all['Domeniu'] == domain)]['Oferta'].unique()
df_all = df_all[~df_all['Oferta'].isin(exclude_list)]
df_all = df_all[df_all['Send'] > int(min_sent)]
df_all = df_all[cols]
# fixed a blank line in the csv
df_all = df_all[df_all["Oferta"] != " "]
df_all['Click Open'] = df_all['Click Open'].str.replace('%', '').astype(float)
df_all['ECPM'] = df_all['ECPM'].astype(float)
df_all['Comision'] = df_all['Comision'].astype(float)
df_all['Send'] = df_all['Send'].astype(int)
# Limit the characters in the "Nume" column
# df_all["Nume"] = df_all["Nume"].apply(_limit_chars)
# Filter for newsletters or offers
if offer_type == "Newsletters":
df_all = df_all[
df_all['Nume'].str.startswith("Aeon News") & \
(~df_all['Nume'].str.contains(r'\(\d{4}\)')) & \
(df_all['Nume'].str.contains(r' \d{4}$')) & \
(~df_all['Nume'].str.contains('TRIMITE'))
]
elif offer_type == "Offers" or offer_type == "Offers - IDs only":
df_all = df_all[~df_all['Nume'].str.startswith("Aeon News")]
df_all = df_all[~df_all['Nume'].str.contains("NU SE TRIMITE")]
df_all = df_all[~df_all['Nume'].str.contains("de testat")]
df_all = df_all[~df_all['Nume'].str.contains("_TEST")]
df_all = df_all[~df_all['Nume'].str.contains("CPM")]
df_all = df_all[~df_all['Nume'].str.contains("RESTRICTED")]
if x_list != "":
x_list = x_list.split(',')
df_all = df_all[~df_all['Nume'].str.contains('|'.join(x_list))]
# Compress the newsletter names
# df_all = df_all[df_all['Nume'].str.contains(r'\b[A-Z]{3}\b.*\b\d{4}\*?\s*(\(\d{4}\))?\b')]
# df_all['Nume'] = df_all['Nume'].apply(_replace_numbers)
# exclude again after the transformation
# df_all = df_all[~df_all['Oferta'].isin(exclude_list)]
df_all.reset_index(drop=True, inplace=True)
if offer_type == "Newsletters":
final_df = df_all.groupby(["Oferta", "Nume"])\
.agg( times_sent=('Oferta', 'count'), send_avg=('Send', 'mean'), CO=('Click Open', 'mean'))\
.sort_values(['CO', 'times_sent'], ascending=False)
final_df['send_avg'] = final_df['send_avg'].astype(int)
final_df['CO'] = final_df['CO'].round(2).astype(float)
final_df.reset_index(inplace=True)
elif offer_type == "Offers":
final_df = df_all.groupby(["Oferta", "Nume"])\
.agg( times_sent=('Oferta', 'count'), send_avg=('Send', 'mean'), ECPM=('ECPM', 'mean'))\
.sort_values(['ECPM', 'times_sent'], ascending=False)
final_df['send_avg'] = final_df['send_avg'].astype(int)
final_df['ECPM'] = final_df['ECPM'].round(2).astype(float)
final_df.reset_index(inplace=True)
elif offer_type == "Offers - IDs only":
final_df = df_all.groupby(["offer_id"])\
.agg( times_sent=('offer_id', 'count'), send_avg=('Send', 'mean'), total_sent=('Send', 'sum'),\
USD=('Comision', 'sum'))
final_df['USD'] = final_df['USD'].round(2).astype(float)
final_df['send_avg'] = final_df['send_avg'].astype(int)
final_df['ECPM'] = ( ( final_df['USD'] * 33.33 ) / final_df['total_sent'] ) * 1000
final_df['ECPM'] = final_df['ECPM'].round(2).astype(float)
final_df.sort_values(by='ECPM', ascending=False, inplace=True)
final_df.reset_index(inplace=True)
else:
final_df = pd.DataFrame()
return final_df