feat: updated algo for offers
Browse files- app.py +4 -4
- utils/gradio_utils.py +24 -9
app.py
CHANGED
@@ -14,10 +14,10 @@ PASS = os.getenv("PASSWORD")
|
|
14 |
# create an interface and limit output's width for the dataframe bu
|
15 |
list_iface = gr.Interface(fn=compute_offer,
|
16 |
inputs=[gr.File(label="Upload CSV", type="file"),
|
17 |
-
gr.Slider(1, 365, value=
|
18 |
-
gr.Slider(5000,
|
19 |
-
gr.Dropdown(["Comcast", "Yahoo", "Hotmail", "Aol"], value="
|
20 |
-
gr.Radio(["Newsletters", "Offers"], label="Type", value="
|
21 |
gr.Textbox(label="Exclude list", info="Example: INH,MNP", value="INH,DHI,HHP,RTA,JVR,HTH,FNC,SCD,ENH,WIP")],
|
22 |
outputs="dataframe")
|
23 |
|
|
|
14 |
# create an interface and limit output's width for the dataframe bu
|
15 |
list_iface = gr.Interface(fn=compute_offer,
|
16 |
inputs=[gr.File(label="Upload CSV", type="file"),
|
17 |
+
gr.Slider(1, 365, value=3, step=1, label="Days", info="Number of days to look back"),
|
18 |
+
gr.Slider(5000, 10000000, value=1000000, step=1, label="Minimum Sent", info="Minimum number of emails sent"),
|
19 |
+
gr.Dropdown(["Comcast", "Yahoo", "Hotmail", "Aol"], value="Yahoo", label="Domain"),
|
20 |
+
gr.Radio(["Newsletters", "Offers"], label="Type", value="Offers"),
|
21 |
gr.Textbox(label="Exclude list", info="Example: INH,MNP", value="INH,DHI,HHP,RTA,JVR,HTH,FNC,SCD,ENH,WIP")],
|
22 |
outputs="dataframe")
|
23 |
|
utils/gradio_utils.py
CHANGED
@@ -256,7 +256,7 @@ def compute_offer(csv_file, days_lookback, min_sent, domain, offer_type, x_list)
|
|
256 |
|
257 |
cols = ['Campanie', 'Oferta', 'Nume', 'Server', 'User',
|
258 |
'Lista Custom', 'Data', 'HClicks', 'Clicks', 'Unscribers', 'Openers',
|
259 |
-
'Click Open', 'Leads', 'CLike', 'Complains', 'Traps', 'Send']
|
260 |
# df_all = raw_df[raw_df['Nume'].str.contains('|'.join(cmp_list))] #1
|
261 |
# df_all = df_all[df_all['Domeniu'] == 'Comcast'] #2
|
262 |
exclude_list = df_all[(df_all['Data'] > (pd.Timestamp('now') - pd.Timedelta(days=days_lookback))) \
|
@@ -265,9 +265,12 @@ def compute_offer(csv_file, days_lookback, min_sent, domain, offer_type, x_list)
|
|
265 |
|
266 |
df_all = df_all[df_all['Send'] > int(min_sent)]
|
267 |
df_all = df_all[cols]
|
268 |
-
df_all['Click Open'] = df_all['Click Open'].str.replace('%', '').astype(float)
|
269 |
# fixed a blank line in the csv
|
270 |
df_all = df_all[df_all["Oferta"] != " "]
|
|
|
|
|
|
|
|
|
271 |
|
272 |
# Limit the characters in the "Nume" column
|
273 |
# df_all["Nume"] = df_all["Nume"].apply(_limit_chars)
|
@@ -282,6 +285,11 @@ def compute_offer(csv_file, days_lookback, min_sent, domain, offer_type, x_list)
|
|
282 |
]
|
283 |
elif offer_type == "Offers":
|
284 |
df_all = df_all[~df_all['Nume'].str.startswith("Aeon News")]
|
|
|
|
|
|
|
|
|
|
|
285 |
|
286 |
if x_list != "":
|
287 |
x_list = x_list.split(',')
|
@@ -294,11 +302,18 @@ def compute_offer(csv_file, days_lookback, min_sent, domain, offer_type, x_list)
|
|
294 |
|
295 |
df_all.reset_index(drop=True, inplace=True)
|
296 |
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
304 |
return final_df
|
|
|
256 |
|
257 |
cols = ['Campanie', 'Oferta', 'Nume', 'Server', 'User',
|
258 |
'Lista Custom', 'Data', 'HClicks', 'Clicks', 'Unscribers', 'Openers',
|
259 |
+
'Click Open', 'Leads', 'CLike', 'Complains', 'Traps', 'Send', 'ECPM']
|
260 |
# df_all = raw_df[raw_df['Nume'].str.contains('|'.join(cmp_list))] #1
|
261 |
# df_all = df_all[df_all['Domeniu'] == 'Comcast'] #2
|
262 |
exclude_list = df_all[(df_all['Data'] > (pd.Timestamp('now') - pd.Timedelta(days=days_lookback))) \
|
|
|
265 |
|
266 |
df_all = df_all[df_all['Send'] > int(min_sent)]
|
267 |
df_all = df_all[cols]
|
|
|
268 |
# fixed a blank line in the csv
|
269 |
df_all = df_all[df_all["Oferta"] != " "]
|
270 |
+
|
271 |
+
df_all['Click Open'] = df_all['Click Open'].str.replace('%', '').astype(float)
|
272 |
+
df_all['ECPM'] = df_all['ECPM'].astype(float)
|
273 |
+
|
274 |
|
275 |
# Limit the characters in the "Nume" column
|
276 |
# df_all["Nume"] = df_all["Nume"].apply(_limit_chars)
|
|
|
285 |
]
|
286 |
elif offer_type == "Offers":
|
287 |
df_all = df_all[~df_all['Nume'].str.startswith("Aeon News")]
|
288 |
+
df_all = df_all[~df_all['Nume'].str.contains("NU SE TRIMITE")]
|
289 |
+
df_all = df_all[~df_all['Nume'].str.contains("de testat")]
|
290 |
+
df_all = df_all[~df_all['Nume'].str.contains("_TEST")]
|
291 |
+
df_all = df_all[~df_all['Nume'].str.contains("CPM")]
|
292 |
+
df_all = df_all[~df_all['Nume'].str.contains("RESTRICTED")]
|
293 |
|
294 |
if x_list != "":
|
295 |
x_list = x_list.split(',')
|
|
|
302 |
|
303 |
df_all.reset_index(drop=True, inplace=True)
|
304 |
|
305 |
+
if offer_type == "Newsletters":
|
306 |
+
final_df = df_all.groupby(["Oferta", "Nume"])\
|
307 |
+
.agg( N=('Oferta', 'count'), send_avg=('Send', 'mean'), CO=('Click Open', 'mean'))\
|
308 |
+
.sort_values(['CO', 'N'], ascending=False)
|
309 |
+
final_df['send_avg'] = final_df['send_avg'].astype(int)
|
310 |
+
final_df['CO'] = final_df['CO'].round(2).astype(float)
|
311 |
+
final_df.reset_index(inplace=True)
|
312 |
+
elif offer_type == "Offers":
|
313 |
+
final_df = df_all.groupby(["Oferta", "Nume"])\
|
314 |
+
.agg( N=('Oferta', 'count'), send_avg=('Send', 'mean'), ECPM=('ECPM', 'mean'))\
|
315 |
+
.sort_values(['ECPM', 'N'], ascending=False)
|
316 |
+
final_df['send_avg'] = final_df['send_avg'].astype(int)
|
317 |
+
final_df['ECPM'] = final_df['ECPM'].round(2).astype(float)
|
318 |
+
final_df.reset_index(inplace=True)
|
319 |
return final_df
|