feat: add both NL and offers
Browse files- app.py +3 -3
- utils/gradio_utils.py +51 -19
app.py
CHANGED
@@ -11,13 +11,13 @@ load_dotenv(dotenv_path=".env", override=True)
|
|
11 |
USER = os.getenv("USERNAME")
|
12 |
PASS = os.getenv("PASSWORD")
|
13 |
|
14 |
-
|
15 |
list_iface = gr.Interface(fn=compute_offer,
|
16 |
inputs=[gr.File(label="Upload CSV", type="file"),
|
17 |
gr.Slider(1, 365, value=30, step=1, label="Days", info="Number of days to look back"),
|
18 |
gr.Slider(5000, 100000, value=15000, step=1, label="Minimum Sent", info="Minimum number of emails sent"),
|
19 |
-
gr.Dropdown(["Comcast", "Yahoo", "Hotmail", "Aol"], value="Comcast", label="Domain")
|
20 |
-
],
|
21 |
outputs="dataframe")
|
22 |
|
23 |
# PLOTTING
|
|
|
11 |
USER = os.getenv("USERNAME")
|
12 |
PASS = os.getenv("PASSWORD")
|
13 |
|
14 |
+
# create an interface and limit output's width for the dataframe bu
|
15 |
list_iface = gr.Interface(fn=compute_offer,
|
16 |
inputs=[gr.File(label="Upload CSV", type="file"),
|
17 |
gr.Slider(1, 365, value=30, step=1, label="Days", info="Number of days to look back"),
|
18 |
gr.Slider(5000, 100000, value=15000, step=1, label="Minimum Sent", info="Minimum number of emails sent"),
|
19 |
+
gr.Dropdown(["Comcast", "Yahoo", "Hotmail", "Aol"], value="Comcast", label="Domain"),
|
20 |
+
gr.Radio(["Newsletters", "Offers"], label="Type", value="Newsletters")],
|
21 |
outputs="dataframe")
|
22 |
|
23 |
# PLOTTING
|
utils/gradio_utils.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import random
|
2 |
import ipaddress
|
3 |
import pandas as pd
|
4 |
-
|
5 |
|
6 |
### SWAKS ###
|
7 |
|
@@ -230,36 +230,68 @@ def generate_ips_per_subclass(ip_subclasses: str, num_of_ips: int) -> str:
|
|
230 |
return "\n".join(ip_addresses)
|
231 |
|
232 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
### GENERATE TOP LISTS ###
|
234 |
-
def compute_offer(csv_file, days_lookback, min_sent, domain):
|
|
|
235 |
# cmp_list = ['MSP', 'HOM', 'NTU', 'HCK', 'DDS', 'MNP', 'PSC', 'DTL', 'GVS', 'ANP', 'WDR', 'BSG'] #1
|
236 |
|
237 |
#raw_df = pd.read_csv('tools/data/30.08.2023.gabriel.sabau.campanii.csv', parse_dates=['Data'])
|
238 |
-
|
239 |
# raw_df = pd.read_csv(csv_file.name, parse_dates=['Data']) #1
|
240 |
|
241 |
cols = ['Campanie', 'Oferta', 'Nume', 'Server', 'User',
|
242 |
'Lista Custom', 'Data', 'HClicks', 'Clicks', 'Unscribers', 'Openers',
|
243 |
'Click Open', 'Leads', 'CLike', 'Complains', 'Traps', 'Send']
|
244 |
-
#
|
245 |
-
#
|
246 |
-
exclude_list =
|
247 |
-
& (
|
248 |
-
|
249 |
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
.agg( N=('Oferta', 'count'), send_avg=('Send', 'mean'), CO=('Click Open', 'mean'))\
|
261 |
.sort_values(['CO', 'N'], ascending=False)
|
262 |
-
final_df['send_avg'] = final_df['send_avg'].
|
|
|
263 |
final_df.reset_index(inplace=True)
|
264 |
|
265 |
return final_df
|
|
|
1 |
import random
|
2 |
import ipaddress
|
3 |
import pandas as pd
|
4 |
+
import re
|
5 |
|
6 |
### SWAKS ###
|
7 |
|
|
|
230 |
return "\n".join(ip_addresses)
|
231 |
|
232 |
|
233 |
+
def _replace_numbers(input_string: str) -> str:
|
234 |
+
# Find the numbers before and inside the parentheses
|
235 |
+
match = re.search(r'(\d+)\s*\((\d+)\)', input_string)
|
236 |
+
if match:
|
237 |
+
# Replace the first set of numbers with the second set
|
238 |
+
replaced_string = input_string.replace(match.group(1), match.group(2), 1)
|
239 |
+
# Remove the parentheses and any surrounding whitespace
|
240 |
+
cleaned_string = re.sub(r'\(\d+\)', '', replaced_string).strip()
|
241 |
+
return cleaned_string
|
242 |
+
else:
|
243 |
+
return input_string
|
244 |
+
|
245 |
+
def _limit_chars(input_string: str, limit: int = 35) -> str:
|
246 |
+
return input_string[:limit]
|
247 |
+
|
248 |
### GENERATE TOP LISTS ###
|
249 |
+
def compute_offer(csv_file, days_lookback, min_sent, domain, offer_type):
|
250 |
+
pd.set_option('display.max_colwidth', 10)
|
251 |
# cmp_list = ['MSP', 'HOM', 'NTU', 'HCK', 'DDS', 'MNP', 'PSC', 'DTL', 'GVS', 'ANP', 'WDR', 'BSG'] #1
|
252 |
|
253 |
#raw_df = pd.read_csv('tools/data/30.08.2023.gabriel.sabau.campanii.csv', parse_dates=['Data'])
|
254 |
+
df_all = pd.read_csv(csv_file.name, parse_dates=['Data'])
|
255 |
# raw_df = pd.read_csv(csv_file.name, parse_dates=['Data']) #1
|
256 |
|
257 |
cols = ['Campanie', 'Oferta', 'Nume', 'Server', 'User',
|
258 |
'Lista Custom', 'Data', 'HClicks', 'Clicks', 'Unscribers', 'Openers',
|
259 |
'Click Open', 'Leads', 'CLike', 'Complains', 'Traps', 'Send']
|
260 |
+
# df_all = raw_df[raw_df['Nume'].str.contains('|'.join(cmp_list))] #1
|
261 |
+
# df_all = df_all[df_all['Domeniu'] == 'Comcast'] #2
|
262 |
+
exclude_list = df_all[(df_all['Data'] > (pd.Timestamp('now') - pd.Timedelta(days=days_lookback))) \
|
263 |
+
& (df_all['Domeniu'] == domain)]['Oferta'].unique()
|
264 |
+
df_all = df_all[~df_all['Oferta'].isin(exclude_list)]
|
265 |
|
266 |
+
df_all = df_all[df_all['Send'] > int(min_sent)]
|
267 |
+
df_all = df_all[cols]
|
268 |
+
df_all['Click Open'] = df_all['Click Open'].str.replace('%', '').astype(float)
|
269 |
+
# fixed a blank line in the csv
|
270 |
+
df_all = df_all[df_all["Oferta"] != " "]
|
271 |
+
|
272 |
+
# Limit the characters in the "Nume" column
|
273 |
+
# df_all["Nume"] = df_all["Nume"].apply(_limit_chars)
|
274 |
+
|
275 |
+
# Filter for newsletters or offers
|
276 |
+
if offer_type == "Newsletters":
|
277 |
+
df_all = df_all[df_all['Nume'].str.startswith("Aeon News") & \
|
278 |
+
(~df_all['Nume'].str.contains(r'\(\d{4}\)')) & \
|
279 |
+
(df_all['Nume'].str.contains(r' \d{4}$'))]
|
280 |
+
elif offer_type == "Offers":
|
281 |
+
df_all = df_all[~df_all['Nume'].str.startswith("Aeon News")]
|
282 |
+
# Compress the newsletter names
|
283 |
+
# df_all = df_all[df_all['Nume'].str.contains(r'\b[A-Z]{3}\b.*\b\d{4}\*?\s*(\(\d{4}\))?\b')]
|
284 |
+
# df_all['Nume'] = df_all['Nume'].apply(_replace_numbers)
|
285 |
+
# exclude again after the transformation
|
286 |
+
# df_all = df_all[~df_all['Oferta'].isin(exclude_list)]
|
287 |
+
|
288 |
+
df_all.reset_index(drop=True, inplace=True)
|
289 |
+
|
290 |
+
final_df = df_all.groupby(["Oferta", "Nume"])\
|
291 |
.agg( N=('Oferta', 'count'), send_avg=('Send', 'mean'), CO=('Click Open', 'mean'))\
|
292 |
.sort_values(['CO', 'N'], ascending=False)
|
293 |
+
final_df['send_avg'] = final_df['send_avg'].astype(int)
|
294 |
+
final_df['CO'] = final_df['CO'].round(2).astype(float)
|
295 |
final_df.reset_index(inplace=True)
|
296 |
|
297 |
return final_df
|