Spaces:
Runtime error
Runtime error
File size: 4,903 Bytes
2eb339f 485a5eb 2eb339f 485a5eb 2eb339f 672f88e 2eb339f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
import gradio as gr
import cv2
import matplotlib as mpl
import matplotlib.cm as cm
import numpy as np
import torch
from model.S2DepthNet import S2DepthTransformerUNetConv # Ensure this is accessible
from data_augmentation import CenterCrop
import os
from os.path import join
import tempfile
# Assuming model weights and config are preloaded or available in the Space
CONFIG = {
"use_phased_arch": True,
"gpu": 0,
"arch": "S2DepthTransformerUNetConv",
"model": {
"gpu": 0,
"every_x_rgb_frame": 1, # Example value, adjust as per your config
"baseline": 0.1, # Example value
"loss_composition": "default", # Example value
"num_bins_events": 128, # Example value, adjust as needed
"spatial_resolution": (224, 224) # Example resolution
},
"data_loader": {
"train": {
"every_x_rgb_frame": 1,
"baseline": 0.1
}
},
"trainer": {
"loss_composition": "default"
}
}
# Load model (assuming weights are in the Space directory)
INITIAL_CHECKPOINT = "path_to_your_model_weights.pth" # Update this path
model = S2DepthTransformerUNetConv(CONFIG["model"])
checkpoint = torch.load(INITIAL_CHECKPOINT, map_location="cpu") # Use CPU for simplicity in Spaces
model.load_state_dict(checkpoint['state_dict'])
model.eval()
# Predefine color mapper
vmax = 0.95 # Example percentile, adjust as needed
normalizer = mpl.colors.Normalize(vmin=0, vmax=vmax)
color_mapper_overall = cm.ScalarMappable(norm=normalizer, cmap='magma')
def RawToSpike(video_seq, h, w, flipud=True):
video_seq = np.array(video_seq).astype(np.uint8)
img_size = h * w
img_num = len(video_seq) // (img_size // 8)
SpikeMatrix = np.zeros([img_num, h, w], np.uint8)
pix_id = np.arange(0, h * w)
pix_id = np.reshape(pix_id, (h, w))
comparator = np.left_shift(1, np.mod(pix_id, 8))
byte_id = pix_id // 8
for img_id in np.arange(img_num):
id_start = int(img_id) * int(img_size) // 8
id_end = int(id_start) + int(img_size) // 8
cur_info = video_seq[id_start:id_end]
data = cur_info[byte_id]
result = np.bitwise_and(data, comparator)
if flipud:
SpikeMatrix[img_id, :, :] = np.flipud((result == comparator))
else:
SpikeMatrix[img_id, :, :] = (result == comparator)
return SpikeMatrix
def make_colormap(img, color_mapper):
color_map_inv = np.ones_like(img[0]) * np.amax(img[0]) - img[0]
color_map_inv = np.nan_to_num(color_map_inv, nan=1)
color_map_inv = color_map_inv / np.amax(color_map_inv)
color_map_inv = np.nan_to_num(color_map_inv)
color_map_inv = color_mapper.to_rgba(color_map_inv)
color_map_inv[:, :, 0:3] = color_map_inv[:, :, 0:3][..., ::-1]
return color_map_inv
def process_spike_file(file):
with open(file.name, 'rb') as f:
spike_seq = f.read()
spike_seq = np.frombuffer(spike_seq, 'b')
# Process spike data
spikes = RawToSpike(spike_seq, 250, 400)
spikes = spikes.astype(np.float32)
spikes = torch.from_numpy(spikes)
data_tranfsorm = CenterCrop(224)
data = data_tranfsorm(spikes)
dT, dH, dW = data.shape
input_data = {"image": data[None, dT//2-64:dT//2+64]}
prev_super_states = {"image": None}
prev_states_lstm = {}
with torch.no_grad():
new_predicted_targets, _, _ = model(input_data, prev_super_states["image"], prev_states_lstm)
predict_depth = new_predicted_targets["image"][0].cpu().numpy()
input_spikes = np.mean(data.permute(1, 2, 0).cpu().numpy(), axis=2).astype(np.float32)
color_map = make_colormap(predict_depth, color_mapper_overall)
# Convert to images for Gradio
depth_img = (predict_depth[0] * 255.0).astype(np.uint8)
input_img = (input_spikes * 255.0).astype(np.uint8)
color_img = (color_map * 255.0).astype(np.uint8)
# Save temporarily and return paths
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_depth, \
tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_input, \
tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_color:
cv2.imwrite(tmp_depth.name, depth_img[:, :, None])
cv2.imwrite(tmp_input.name, input_img[:, :, None])
cv2.imwrite(tmp_color.name, color_img)
return tmp_depth.name, tmp_input.name, tmp_color.name
# Gradio Interface
interface = gr.Interface(
fn=process_spike_file,
inputs=gr.File(label="Upload Spike Sequence File"),
outputs=[
gr.Image(label="Depth Estimation"),
gr.Image(label="Input Spikes"),
gr.Image(label="Color Map")
],
title="Spike Stream Depth Estimation",
description="Upload a spike sequence file to estimate depth using S2DepthTransformerUNetConv."
)
if __name__ == "__main__":
interface.launch() |