import torch class STP: def __init__(self, tau_d=7e-3, tau_f=10e-3, U=0.15, C=1.0, device='cpu'): self.tau_d = tau_d # 突触衰减时间常数 self.tau_f = tau_f # 突触恢复时间常数 self.U = U # 使用率 self.C = C # 输入脉冲强度 self.device = device def update(self, R_prev, u_prev): """ 更新 STP 变量 """ u_new = u_prev + self.U * (1 - u_prev) # 更新 u R_new = R_prev * (1 - u_prev) + self.C # 更新 R return R_new, u_new def detect_motion(R_n, R_prev, theta=0.1): """ 计算运动掩码 M """ motion_mask = (torch.abs(R_n - R_prev) >= theta).float() return motion_mask class LIFNeuron: def __init__(self, tau_m=25e-6, v_rest=0.0, v_th=1.0, device='cpu'): self.tau_m = tau_m # 膜时间常数 self.v_rest = v_rest # 静息电位 self.v_th = v_th # 阈值 self.device = device def update(self, v_prev, input_current): """ 更新 LIF 神经元膜电位 """ dv = (- (v_prev - self.v_rest) + input_current) / self.tau_m v_new = v_prev + dv spike = (v_new >= self.v_th).float() # 触发 spike v_new = torch.where(spike > 0, self.v_rest, v_new) # 超过阈值的重置 return v_new, spike # 初始化参数 device = 'cuda' if torch.cuda.is_available() else 'cpu' stp = STP(device=device) lif = LIFNeuron(device=device) # 假设有 t 帧的 spike 数据 num_frames = 100 height, width = 128, 128 # 图像尺寸 R = torch.zeros((height, width), device=device) u = torch.zeros((height, width), device=device) v = torch.zeros((height, width), device=device) # 存储结果 motion_results = [] for t in range(num_frames): R_prev = R.clone() # 记录上一个时间步的 R u_prev = u.clone() # STP 更新 R, u = stp.update(R_prev, u_prev) # 运动检测 motion_mask = detect_motion(R, R_prev, theta=0.1) # LIF 过滤 v, spike_output = lif.update(v, motion_mask) # 保存结果 motion_results.append(spike_output.cpu().numpy())