File size: 8,357 Bytes
5fc3d65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import argparse
import json
import logging
import os
from os.path import join
import cv2
import matplotlib as mpl
import matplotlib.cm as cm
import numpy as np
import torch
import matplotlib.pyplot as plt
import gradio as gr
import cv2
import matplotlib
import numpy as np
import os
from PIL import Image
import torch
from depth_anything_v2.dpt import DepthAnythingV2
from utils_spike import spikes_to_bsf, load_vidar_dat
from recon.recon_bsf.bsf_utils import InputPadder
from recon.recon_bsf.bsf.bsf import BSF
from collections import OrderedDict
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
def save_vidar_dat(save_path, SpikeSeq, filpud=True, delete_if_exists=True):
if delete_if_exists:
if os.path.exists(save_path):
os.remove(save_path)
sfn, h, w = SpikeSeq.shape
assert (h * w) % 8 == 0
base = np.power(2, np.linspace(0, 7, 8))
fid = open(save_path, 'ab')
for img_id in range(sfn):
if filpud:
spike = np.flipud(SpikeSeq[img_id, :, :])
else:
spike = SpikeSeq[img_id, :, :]
spike = spike.flatten()
spike = spike.reshape([int(h*w/8), 8])
data = spike * base
data = np.sum(data, axis=1).astype(np.uint8)
fid.write(data.tobytes())
fid.close()
return
def load_vidar_dat(filename, frame_cnt=None, width=640, height=480, reverse_spike=True):
'''
output: <class 'numpy.ndarray'> (frame_cnt, height, width) {0,1} float32
'''
array = np.fromfile(filename, dtype=np.uint8)
len_per_frame = height * width // 8
framecnt = frame_cnt if frame_cnt != None else len(array) // len_per_frame
spikes = []
for i in range(framecnt):
compr_frame = array[i * len_per_frame: (i + 1) * len_per_frame]
blist = []
for b in range(8):
blist.append(np.right_shift(np.bitwise_and(
compr_frame, np.left_shift(1, b)), b))
frame_ = np.stack(blist).transpose()
frame_ = frame_.reshape((height, width), order='C')
if reverse_spike:
frame_ = np.flipud(frame_)
spikes.append(frame_)
return np.array(spikes).astype(np.float32)
def RawToSpike(video_seq, h, w, flipud=True):
video_seq = np.array(video_seq).astype(np.uint8)
img_size = h*w
img_num = len(video_seq)//(img_size//8)
SpikeMatrix = np.zeros([img_num, h, w], np.uint8)
pix_id = np.arange(0,h*w)
pix_id = np.reshape(pix_id, (h, w))
comparator = np.left_shift(1, np.mod(pix_id, 8))
byte_id = pix_id // 8
for img_id in np.arange(img_num):
id_start = int(img_id)*int(img_size)//8
id_end = int(id_start) + int(img_size)//8
cur_info = video_seq[id_start:id_end]
data = cur_info[byte_id]
result = np.bitwise_and(data, comparator)
if flipud:
SpikeMatrix[img_id, :, :] = np.flipud((result == comparator))
else:
SpikeMatrix[img_id, :, :] = (result == comparator)
return SpikeMatrix
def spikes_to_middletfi(spike, middle, window=50):
C, H, W = spike.shape
lindex, rindex = torch.zeros([H, W]), torch.zeros([H, W])
l, r = middle+1, middle+1
for r in range(middle+1, middle + window+1):
l = l - 1
if l>=0:
newpos = spike[l, :, :]*(1 - torch.sign(lindex))
distance = l*newpos
lindex += distance
if r<C:
newpos = spike[r, :, :]*(1 - torch.sign(rindex))
distance = r*newpos
rindex += distance
if l<0 and r>=C:
break
rindex[rindex == 0] = window + middle
lindex[lindex == 0] = middle - window
interval = rindex - lindex
tfi = 1.0 / interval
tfi = tfi.unsqueeze(0)
return tfi.float()
def spikes_to_tfp(spike, idx, halfwsize):
# real size of window == 2*halfwsize+1
spike_ = spike[idx-halfwsize:idx+halfwsize]
tfp_img = torch.mean(spike_, axis=0)
spike_min, spike_max = torch.min(tfp_img), torch.max(tfp_img)
tfp_img = (tfp_img - spike_min) / (spike_max - spike_min)
return tfp_img
def predict_depth(image):
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
model_configs = {
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
}
encoder2name = {
'vits': 'Small',
'vitb': 'Base',
'vitl': 'Large',
'vitg': 'Giant', # we are undergoing company review procedures to release our giant model checkpoint
}
encoder = 'vits'
model_name = encoder2name[encoder]
model = DepthAnythingV2(**model_configs[encoder])
filepath = f"checkpoints/depth_anything_v2_{encoder}.pth"
state_dict = torch.load(filepath, map_location="cpu")
model.load_state_dict(state_dict)
model = model.to(DEVICE).eval()
return model.infer_image(image)
def predict_recon_bsf(spike):
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
bsf_model = BSF().to(DEVICE).eval()
bsf_ckpt = torch.load("checkpoints/bsf.pth", weights_only=True, map_location="cpu")
new_bsf_ckpt = OrderedDict()
for k, v in bsf_ckpt.items():
name = k.replace('module.', '')
new_bsf_ckpt[name] = v
bsf_model.load_state_dict(new_bsf_ckpt)
bsf_padder = InputPadder((1, 1, spike.shape[1], spike.shape[2]), padsize=16)
central_index=spike.shape[0]//2
recon_bsf = spikes_to_bsf(spike, bsf_model, bsf_padder, central_index, DEVICE)
return recon_bsf
if __name__ == "__main__":
for i in ["08", "26", "28"]:
spike_path = f'C:/Users/lze/Desktop/dat/MDE_Dataset/Outdoor-Spike/seq_{i}.dat'
f = open(spike_path, 'rb')
spike_seq = f.read()
spike_seq = np.frombuffer(spike_seq, 'b')
spike = RawToSpike(spike_seq, 250, 400)
spike = spike.astype(np.float32)
f.close()
######################################################################################
# spike = spike[9800:10200, :, :]
# save_vidar_dat(f'o{i}.dat', spike, filpud=False, delete_if_exists=True)
######################################################################################
if i == "08":
spike = spike[9800:10200, 15:-16, 89:-92]
print(spike.shape)
elif i == "26":
spike = spike[9800:10200, 18:-18, 87:-99]
print(spike.shape)
elif i == "28":
spike = spike[9800:10200, 13:-13, 88:-88]
print(spike.shape)
######################################################################################
cmap = matplotlib.colormaps.get_cmap('plasma')
h, w = spike.shape[1:3]
recon_bsf = predict_recon_bsf(spike)
print(type(recon_bsf), recon_bsf.shape)
recon_bsf = recon_bsf.repeat(3,1,1)
print(type(recon_bsf), recon_bsf.shape)
# recon_bsf = (recon_bsf.permute(1,2,0).numpy()*255.0).astype(np.uint8)
th, tw = recon_bsf.shape[1], recon_bsf.shape[2]
min_dim = min(th, tw)
center_crop = recon_bsf[:, (th - min_dim) // 2:(th + min_dim) // 2, (tw - min_dim) // 2:(tw + min_dim) // 2]
recon_bsf = (center_crop.permute(1,2,0).numpy()*255.0).astype(np.uint8)
print(type(recon_bsf), recon_bsf.shape)
depth = predict_depth(recon_bsf[:, :, ::--1])
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
depth = depth.astype(np.uint8)
colored_depth = (cmap(depth)[:, :, :3] * 255).astype(np.uint8)
recon_bsf_image_path = f'recon_bsf_{i}.png'
colored_depth_image_path = f'colored_depth_{i}.png'
# 保存 recon_bsf 图像
plt.imsave(recon_bsf_image_path, recon_bsf)
# 保存 colored_depth 图像
plt.imsave(colored_depth_image_path, colored_depth)
print(f'保存图像: {recon_bsf_image_path} 和 {colored_depth_image_path}')
|