File size: 8,357 Bytes
5fc3d65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import argparse
import json
import logging
import os
from os.path import join
import cv2
import matplotlib as mpl
import matplotlib.cm as cm
import numpy as np
import torch
import matplotlib.pyplot as plt
import gradio as gr
import cv2
import matplotlib
import numpy as np
import os
from PIL import Image
import torch
from depth_anything_v2.dpt import DepthAnythingV2
from utils_spike import spikes_to_bsf, load_vidar_dat
from recon.recon_bsf.bsf_utils import InputPadder
from recon.recon_bsf.bsf.bsf import BSF
from collections import OrderedDict


DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
def save_vidar_dat(save_path, SpikeSeq, filpud=True, delete_if_exists=True):
    if delete_if_exists:
        if os.path.exists(save_path):
            os.remove(save_path)
    sfn, h, w = SpikeSeq.shape
    assert (h * w) % 8 == 0
    base = np.power(2, np.linspace(0, 7, 8))
    fid = open(save_path, 'ab')
    for img_id in range(sfn):
        if filpud:
            spike = np.flipud(SpikeSeq[img_id, :, :])
        else:
            spike = SpikeSeq[img_id, :, :]
        spike = spike.flatten()
        spike = spike.reshape([int(h*w/8), 8])
        data = spike * base
        data = np.sum(data, axis=1).astype(np.uint8)
        fid.write(data.tobytes())
    fid.close()
    return

def load_vidar_dat(filename, frame_cnt=None, width=640, height=480, reverse_spike=True):
    '''

    output: <class 'numpy.ndarray'> (frame_cnt, height, width) {0,1} float32

    '''
    array = np.fromfile(filename, dtype=np.uint8)

    len_per_frame = height * width // 8
    framecnt = frame_cnt if frame_cnt != None else len(array) // len_per_frame

    spikes = []
    for i in range(framecnt):
        compr_frame = array[i * len_per_frame: (i + 1) * len_per_frame]
        blist = []
        for b in range(8):
            blist.append(np.right_shift(np.bitwise_and(
                compr_frame, np.left_shift(1, b)), b))

        frame_ = np.stack(blist).transpose()
        frame_ = frame_.reshape((height, width), order='C')
        if reverse_spike:
            frame_ = np.flipud(frame_)
        spikes.append(frame_)

    return np.array(spikes).astype(np.float32)


def RawToSpike(video_seq, h, w, flipud=True):

    video_seq = np.array(video_seq).astype(np.uint8)
    img_size = h*w
    img_num = len(video_seq)//(img_size//8)
    SpikeMatrix = np.zeros([img_num, h, w], np.uint8)
    pix_id = np.arange(0,h*w)
    pix_id = np.reshape(pix_id, (h, w))
    comparator = np.left_shift(1, np.mod(pix_id, 8))
    byte_id = pix_id // 8

    for img_id in np.arange(img_num):
        id_start = int(img_id)*int(img_size)//8
        id_end = int(id_start) + int(img_size)//8
        cur_info = video_seq[id_start:id_end]
        data = cur_info[byte_id]
        result = np.bitwise_and(data, comparator)
        if flipud:
            SpikeMatrix[img_id, :, :] = np.flipud((result == comparator))
        else:
            SpikeMatrix[img_id, :, :] = (result == comparator)

    return SpikeMatrix

def spikes_to_middletfi(spike, middle, window=50):
    C, H, W = spike.shape
    lindex, rindex = torch.zeros([H, W]), torch.zeros([H, W])
    l, r = middle+1, middle+1
    for r in range(middle+1, middle + window+1):
        l = l - 1
        if l>=0:
            newpos = spike[l, :, :]*(1 - torch.sign(lindex)) 
            distance = l*newpos
            lindex += distance
        if r<C:
            newpos = spike[r, :, :]*(1 - torch.sign(rindex))
            distance = r*newpos
            rindex += distance
        if l<0 and r>=C:
            break
    rindex[rindex == 0] = window + middle
    lindex[lindex == 0] = middle - window
    interval = rindex - lindex
    tfi = 1.0 / interval
    tfi = tfi.unsqueeze(0) 
    return tfi.float() 


def spikes_to_tfp(spike, idx, halfwsize):
    # real size of window == 2*halfwsize+1
    spike_ = spike[idx-halfwsize:idx+halfwsize]
    tfp_img = torch.mean(spike_, axis=0)
    spike_min, spike_max = torch.min(tfp_img), torch.max(tfp_img)
    tfp_img = (tfp_img - spike_min) / (spike_max - spike_min)
    return tfp_img



def predict_depth(image):
    DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
    model_configs = {
        'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
        'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
        'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
        'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
    }
    encoder2name = {
        'vits': 'Small',
        'vitb': 'Base',
        'vitl': 'Large',
        'vitg': 'Giant', # we are undergoing company review procedures to release our giant model checkpoint
    }
    encoder = 'vits'
    model_name = encoder2name[encoder]
    model = DepthAnythingV2(**model_configs[encoder])
    filepath = f"checkpoints/depth_anything_v2_{encoder}.pth"
    state_dict = torch.load(filepath, map_location="cpu")
    model.load_state_dict(state_dict)
    model = model.to(DEVICE).eval()
    return model.infer_image(image)


def predict_recon_bsf(spike):
    DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
    bsf_model = BSF().to(DEVICE).eval()
    bsf_ckpt = torch.load("checkpoints/bsf.pth", weights_only=True, map_location="cpu")
    new_bsf_ckpt = OrderedDict()
    for k, v in bsf_ckpt.items():
        name = k.replace('module.', '')
        new_bsf_ckpt[name] = v
    bsf_model.load_state_dict(new_bsf_ckpt)
    bsf_padder = InputPadder((1, 1, spike.shape[1], spike.shape[2]), padsize=16)
    central_index=spike.shape[0]//2 
    recon_bsf = spikes_to_bsf(spike, bsf_model, bsf_padder, central_index, DEVICE)
    return recon_bsf




if __name__ == "__main__":
    for i in ["08", "26", "28"]:
        spike_path = f'C:/Users/lze/Desktop/dat/MDE_Dataset/Outdoor-Spike/seq_{i}.dat'
        f = open(spike_path, 'rb')
        spike_seq = f.read() 
        spike_seq = np.frombuffer(spike_seq, 'b')
        spike = RawToSpike(spike_seq, 250, 400)
        spike = spike.astype(np.float32)
        f.close()
######################################################################################
        # spike = spike[9800:10200, :, :]
        # save_vidar_dat(f'o{i}.dat', spike, filpud=False, delete_if_exists=True)
######################################################################################
        if i == "08":
            spike = spike[9800:10200, 15:-16, 89:-92]
            print(spike.shape)
        elif i == "26":
            spike = spike[9800:10200, 18:-18, 87:-99]
            print(spike.shape)
        elif i == "28":
            spike = spike[9800:10200, 13:-13, 88:-88]
            print(spike.shape)
######################################################################################

        cmap = matplotlib.colormaps.get_cmap('plasma')
        h, w = spike.shape[1:3]
        recon_bsf = predict_recon_bsf(spike)
        print(type(recon_bsf), recon_bsf.shape)
        recon_bsf = recon_bsf.repeat(3,1,1)
        print(type(recon_bsf), recon_bsf.shape)
        # recon_bsf = (recon_bsf.permute(1,2,0).numpy()*255.0).astype(np.uint8)
        th, tw = recon_bsf.shape[1], recon_bsf.shape[2]
        min_dim = min(th, tw)
        center_crop = recon_bsf[:, (th - min_dim) // 2:(th + min_dim) // 2, (tw - min_dim) // 2:(tw + min_dim) // 2]
        recon_bsf = (center_crop.permute(1,2,0).numpy()*255.0).astype(np.uint8)
        print(type(recon_bsf), recon_bsf.shape)
        depth = predict_depth(recon_bsf[:, :, ::--1])
        depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
        depth = depth.astype(np.uint8)
        colored_depth = (cmap(depth)[:, :, :3] * 255).astype(np.uint8)

        recon_bsf_image_path = f'recon_bsf_{i}.png'
        colored_depth_image_path = f'colored_depth_{i}.png'
        # 保存 recon_bsf 图像
        plt.imsave(recon_bsf_image_path, recon_bsf)
        # 保存 colored_depth 图像
        plt.imsave(colored_depth_image_path, colored_depth)
        print(f'保存图像: {recon_bsf_image_path}{colored_depth_image_path}')