File size: 7,384 Bytes
5fc3d65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# -*- coding: utf-8 -*- 
# @Time : 2022/6/12 15:21 
# @Author : Yajing Zheng
# @File : visualize.py
import cv2
import numpy as np
import matplotlib.pyplot as plt
import json
from pprint import pprint
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.pyplot import MultipleLocator

def obtain_spike_video(spikes, video_filename, **dataDict):
    spike_h = dataDict.get('spike_h')
    spike_w = dataDict.get('spike_w')
    timestamps = spikes.shape[0]

    mov = cv2.VideoWriter(video_filename, cv2.VideoWriter_fourcc(*'MJPG'), 30, (spike_w, spike_h))

    for iSpk in range(timestamps):
        tmpSpk = spikes[iSpk, :, :] * 255
        tmpSpk = cv2.cvtColor(tmpSpk.astype(np.uint8), cv2.COLOR_GRAY2BGR)
        mov.write(tmpSpk)

    mov.release()


def obtain_reconstruction_video(images, video_filename, **dataDict):
    spike_h = dataDict.get('spike_h')
    spike_w = dataDict.get('spike_w')

    img_num = images.shape[0]
    mov = cv2.VideoWriter(video_filename, cv2.VideoWriter_fourcc(*'MJPG'), 30, (spike_w, spike_h))
    for iImg in range(img_num):
        tmp_img = images[iImg, :, :]
        tmp_img = cv2.cvtColor(tmp_img, cv2.COLOR_GRAY2BGR)
        mov.write(tmp_img)

    mov.release()


def obtain_mot_video(spikes, video_filename, res_filepath, **dataDict):
    spike_h = dataDict.get('spike_h')
    spike_w = dataDict.get('spike_w')

    gt_file = dataDict.get('labeled_data_dir')
    gt_boxes = {}
    if gt_file is not None:
        gt_f = open(gt_file, 'r')
        gt_lines = gt_f.readlines()
        for line in gt_lines:
            gt_term = line.split(',')
            time_step = gt_term[0]
            box_id = gt_term[1]
            x = float(gt_term[2])
            y = float(gt_term[3])
            w = float(gt_term[4])
            h = float(gt_term[5])

            if str(time_step) not in gt_boxes:
                gt_boxes[str(time_step)] = []
            bbox = [box_id, x, y, w, h]
            gt_boxes[str(time_step)].append(bbox)

        gt_f.close()

    result_file = res_filepath
    test_boxes = {}
    result_f = open(result_file, 'r')
    result_lines = result_f.readlines()
    color_dict = {}

    for line in result_lines:
        res_box = line.split(',')
        time_step = res_box[0]
        track_id = res_box[1]
        if track_id not in color_dict.keys():
            colors = (np.random.rand(1, 3) * 255).astype(np.uint8)
            color_dict[track_id] = np.squeeze(colors)

        x = float(res_box[2])
        y = float(res_box[3])
        w = float(res_box[4])
        h = float(res_box[5])

        if str(time_step) not in test_boxes:
            test_boxes[str(time_step)] = []

        test_box = [track_id, x, y, w, h]
        test_boxes[str(time_step)].append(test_box)

    result_f.close()

    mov = cv2.VideoWriter(video_filename, cv2.VideoWriter_fourcc(*'MJPG'), 30, (spike_w, spike_h))

    timestamps = spikes.shape[0]
    for t in range(151, timestamps):
    # for t in range(160, 1000):
        tmp_ivs = spikes[t, :, :] * 255
        tmp_ivs = cv2.cvtColor(tmp_ivs.astype(np.uint8), cv2.COLOR_GRAY2BGR)

        if len(gt_boxes) > 0:
            if str(t) in gt_boxes:
                gts = gt_boxes[str(t)]
                gt_num = len(gts)
                for i in range(gt_num):
                    box = gts[i]
                    box_id = box[0]
                    cv2.rectangle(tmp_ivs, (int(box[2]), int(box[1])),
                                  (int(box[2] + box[4]), int(box[1] + box[3])),
                                  (int(255), int(255), int(255)), 2)

        if str(t) in test_boxes:
            test = test_boxes[str(t)]
            test_num = len(test)
            for i in range(test_num):
                box = test[i]
                box_id = box[0]
                colors = color_dict[box_id]
                cv2.rectangle(tmp_ivs, (int(box[2]), int(box[1])),
                              (int(box[2] + box[4]), int(box[1] + box[3])),
                              (int(colors[0]), int(colors[1]), int(colors[2])), 2)

        mov.write(tmp_ivs)

    mov.release()


def obtain_detection_video(spikes, video_filename, res_filepath, **dataDict):
    spike_h = dataDict.get('spike_h')
    spike_w = dataDict.get('spike_w')

    result_file = res_filepath
    test_boxes = {}
    result_f = open(result_file, 'r')
    result_lines = result_f.readlines()
    color_dict = {}

    for line in result_lines:
        res_box = line.split(',')
        time_step = res_box[0]
        track_id = res_box[1]
        if track_id not in color_dict.keys():
            colors = (np.random.rand(1, 3) * 255).astype(np.uint8)
            color_dict[track_id] = np.squeeze(colors)

        x = float(res_box[2])
        y = float(res_box[3])
        w = float(res_box[4])
        h = float(res_box[5])

        if str(time_step) not in test_boxes:
            test_boxes[str(time_step)] = []

        test_box = [track_id, x, y, w, h]
        test_boxes[str(time_step)].append(test_box)

    result_f.close()

    mov = cv2.VideoWriter(video_filename, cv2.VideoWriter_fourcc(*'MJPG'), 30, (spike_w, spike_h))

    block_len = spikes.shape[0]
    for t in range(150, block_len):
        tmp_ivs = spikes[t, :, :] * 255
        tmp_ivs = cv2.cvtColor(tmp_ivs.astype(np.uint8), cv2.COLOR_GRAY2BGR)

        if str(t) in test_boxes:
            test = test_boxes[str(t)]
            test_num = len(test)
            for i in range(test_num):
                box = test[i]
                box_id = box[0]
                colors = color_dict[box_id]
                cv2.rectangle(tmp_ivs, (int(box[2]), int(box[1])),
                              (int(box[2] + box[4]), int(box[1] + box[3])),
                              (int(colors[0]), int(colors[1]), int(colors[2])), 2)

        mov.write(tmp_ivs)

    mov.release()


def vis_trajectory(box_file, json_file, filename, **dataDict):

    spike_h = dataDict.get('spike_h')
    spike_w = dataDict.get('spike_w')
    traj_dict = []
    with open(json_file, 'r') as f:
        for line in f.readlines():
            traj_dict.append(json.loads(line))

    box_file = open(box_file, 'r')
    result_lines = box_file.readlines()
    num_traj = len(traj_dict)

    fig = plt.figure(figsize=[10, 6])
    ax = fig.add_subplot(111, projection='3d')
    min_t = 1000
    max_t = 0

    for tmp_traj in traj_dict:
        tmp_t = np.array(tmp_traj['t'])
        if np.min(tmp_t) < min_t:
            min_t = np.min(tmp_t)
        if np.max(tmp_t) > max_t:
           max_t = np.max(tmp_t)

        tmp_x = spike_w - np.array(tmp_traj['x'])
        tmp_y = np.array(tmp_traj['y'])
        tmp_color = np.array(tmp_traj['color']) / 255.
        ax.plot(tmp_t, tmp_x, tmp_y, color=tmp_color, linewidth=2, label='traj ' + str(tmp_traj['id']))

    ax.legend(loc='best', bbox_to_anchor=(0.7, 0., 0.4, 0.8))
    zoom = [2.2, 0.8, 0.5, 1]
    ax.get_proj = lambda: np.dot(Axes3D.get_proj(ax), np.diag([zoom[0], zoom[1], zoom[2], zoom[3]]))
    ax.set_xlim(min_t, max_t)
    ax.set_ylim(0, spike_w)
    ax.set_zlim(0, spike_h)

    ax.set_xlabel('time', fontsize=15)
    ax.set_ylabel('width', fontsize=15)
    ax.set_zlabel('height', fontsize=15)

    ax.view_init(elev=16, azim=135)
    # ax.view_init(elev=2, azim=27)
    ax.yaxis.set_major_locator(MultipleLocator(100))
    fig.subplots_adjust(top=1., bottom=0., left=0.2, right=1.)
    plt.show()