File size: 7,384 Bytes
5fc3d65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
# -*- coding: utf-8 -*-
# @Time : 2022/6/12 15:21
# @Author : Yajing Zheng
# @File : visualize.py
import cv2
import numpy as np
import matplotlib.pyplot as plt
import json
from pprint import pprint
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.pyplot import MultipleLocator
def obtain_spike_video(spikes, video_filename, **dataDict):
spike_h = dataDict.get('spike_h')
spike_w = dataDict.get('spike_w')
timestamps = spikes.shape[0]
mov = cv2.VideoWriter(video_filename, cv2.VideoWriter_fourcc(*'MJPG'), 30, (spike_w, spike_h))
for iSpk in range(timestamps):
tmpSpk = spikes[iSpk, :, :] * 255
tmpSpk = cv2.cvtColor(tmpSpk.astype(np.uint8), cv2.COLOR_GRAY2BGR)
mov.write(tmpSpk)
mov.release()
def obtain_reconstruction_video(images, video_filename, **dataDict):
spike_h = dataDict.get('spike_h')
spike_w = dataDict.get('spike_w')
img_num = images.shape[0]
mov = cv2.VideoWriter(video_filename, cv2.VideoWriter_fourcc(*'MJPG'), 30, (spike_w, spike_h))
for iImg in range(img_num):
tmp_img = images[iImg, :, :]
tmp_img = cv2.cvtColor(tmp_img, cv2.COLOR_GRAY2BGR)
mov.write(tmp_img)
mov.release()
def obtain_mot_video(spikes, video_filename, res_filepath, **dataDict):
spike_h = dataDict.get('spike_h')
spike_w = dataDict.get('spike_w')
gt_file = dataDict.get('labeled_data_dir')
gt_boxes = {}
if gt_file is not None:
gt_f = open(gt_file, 'r')
gt_lines = gt_f.readlines()
for line in gt_lines:
gt_term = line.split(',')
time_step = gt_term[0]
box_id = gt_term[1]
x = float(gt_term[2])
y = float(gt_term[3])
w = float(gt_term[4])
h = float(gt_term[5])
if str(time_step) not in gt_boxes:
gt_boxes[str(time_step)] = []
bbox = [box_id, x, y, w, h]
gt_boxes[str(time_step)].append(bbox)
gt_f.close()
result_file = res_filepath
test_boxes = {}
result_f = open(result_file, 'r')
result_lines = result_f.readlines()
color_dict = {}
for line in result_lines:
res_box = line.split(',')
time_step = res_box[0]
track_id = res_box[1]
if track_id not in color_dict.keys():
colors = (np.random.rand(1, 3) * 255).astype(np.uint8)
color_dict[track_id] = np.squeeze(colors)
x = float(res_box[2])
y = float(res_box[3])
w = float(res_box[4])
h = float(res_box[5])
if str(time_step) not in test_boxes:
test_boxes[str(time_step)] = []
test_box = [track_id, x, y, w, h]
test_boxes[str(time_step)].append(test_box)
result_f.close()
mov = cv2.VideoWriter(video_filename, cv2.VideoWriter_fourcc(*'MJPG'), 30, (spike_w, spike_h))
timestamps = spikes.shape[0]
for t in range(151, timestamps):
# for t in range(160, 1000):
tmp_ivs = spikes[t, :, :] * 255
tmp_ivs = cv2.cvtColor(tmp_ivs.astype(np.uint8), cv2.COLOR_GRAY2BGR)
if len(gt_boxes) > 0:
if str(t) in gt_boxes:
gts = gt_boxes[str(t)]
gt_num = len(gts)
for i in range(gt_num):
box = gts[i]
box_id = box[0]
cv2.rectangle(tmp_ivs, (int(box[2]), int(box[1])),
(int(box[2] + box[4]), int(box[1] + box[3])),
(int(255), int(255), int(255)), 2)
if str(t) in test_boxes:
test = test_boxes[str(t)]
test_num = len(test)
for i in range(test_num):
box = test[i]
box_id = box[0]
colors = color_dict[box_id]
cv2.rectangle(tmp_ivs, (int(box[2]), int(box[1])),
(int(box[2] + box[4]), int(box[1] + box[3])),
(int(colors[0]), int(colors[1]), int(colors[2])), 2)
mov.write(tmp_ivs)
mov.release()
def obtain_detection_video(spikes, video_filename, res_filepath, **dataDict):
spike_h = dataDict.get('spike_h')
spike_w = dataDict.get('spike_w')
result_file = res_filepath
test_boxes = {}
result_f = open(result_file, 'r')
result_lines = result_f.readlines()
color_dict = {}
for line in result_lines:
res_box = line.split(',')
time_step = res_box[0]
track_id = res_box[1]
if track_id not in color_dict.keys():
colors = (np.random.rand(1, 3) * 255).astype(np.uint8)
color_dict[track_id] = np.squeeze(colors)
x = float(res_box[2])
y = float(res_box[3])
w = float(res_box[4])
h = float(res_box[5])
if str(time_step) not in test_boxes:
test_boxes[str(time_step)] = []
test_box = [track_id, x, y, w, h]
test_boxes[str(time_step)].append(test_box)
result_f.close()
mov = cv2.VideoWriter(video_filename, cv2.VideoWriter_fourcc(*'MJPG'), 30, (spike_w, spike_h))
block_len = spikes.shape[0]
for t in range(150, block_len):
tmp_ivs = spikes[t, :, :] * 255
tmp_ivs = cv2.cvtColor(tmp_ivs.astype(np.uint8), cv2.COLOR_GRAY2BGR)
if str(t) in test_boxes:
test = test_boxes[str(t)]
test_num = len(test)
for i in range(test_num):
box = test[i]
box_id = box[0]
colors = color_dict[box_id]
cv2.rectangle(tmp_ivs, (int(box[2]), int(box[1])),
(int(box[2] + box[4]), int(box[1] + box[3])),
(int(colors[0]), int(colors[1]), int(colors[2])), 2)
mov.write(tmp_ivs)
mov.release()
def vis_trajectory(box_file, json_file, filename, **dataDict):
spike_h = dataDict.get('spike_h')
spike_w = dataDict.get('spike_w')
traj_dict = []
with open(json_file, 'r') as f:
for line in f.readlines():
traj_dict.append(json.loads(line))
box_file = open(box_file, 'r')
result_lines = box_file.readlines()
num_traj = len(traj_dict)
fig = plt.figure(figsize=[10, 6])
ax = fig.add_subplot(111, projection='3d')
min_t = 1000
max_t = 0
for tmp_traj in traj_dict:
tmp_t = np.array(tmp_traj['t'])
if np.min(tmp_t) < min_t:
min_t = np.min(tmp_t)
if np.max(tmp_t) > max_t:
max_t = np.max(tmp_t)
tmp_x = spike_w - np.array(tmp_traj['x'])
tmp_y = np.array(tmp_traj['y'])
tmp_color = np.array(tmp_traj['color']) / 255.
ax.plot(tmp_t, tmp_x, tmp_y, color=tmp_color, linewidth=2, label='traj ' + str(tmp_traj['id']))
ax.legend(loc='best', bbox_to_anchor=(0.7, 0., 0.4, 0.8))
zoom = [2.2, 0.8, 0.5, 1]
ax.get_proj = lambda: np.dot(Axes3D.get_proj(ax), np.diag([zoom[0], zoom[1], zoom[2], zoom[3]]))
ax.set_xlim(min_t, max_t)
ax.set_ylim(0, spike_w)
ax.set_zlim(0, spike_h)
ax.set_xlabel('time', fontsize=15)
ax.set_ylabel('width', fontsize=15)
ax.set_zlabel('height', fontsize=15)
ax.view_init(elev=16, azim=135)
# ax.view_init(elev=2, azim=27)
ax.yaxis.set_major_locator(MultipleLocator(100))
fig.subplots_adjust(top=1., bottom=0., left=0.2, right=1.)
plt.show()
|