File size: 4,877 Bytes
5fc3d65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import argparse
import json
import logging
import os
from os.path import join
import cv2
import matplotlib as mpl
import matplotlib.cm as cm
import numpy as np
import torch
import matplotlib.pyplot as plt

def save_vidar_dat(save_path, SpikeSeq, filpud=True, delete_if_exists=True):
    if delete_if_exists:
        if os.path.exists(save_path):
            os.remove(save_path)
    sfn, h, w = SpikeSeq.shape
    assert (h * w) % 8 == 0
    base = np.power(2, np.linspace(0, 7, 8))
    fid = open(save_path, 'ab')
    for img_id in range(sfn):
        if filpud:
            spike = np.flipud(SpikeSeq[img_id, :, :])
        else:
            spike = SpikeSeq[img_id, :, :]
        spike = spike.flatten()
        spike = spike.reshape([int(h*w/8), 8])
        data = spike * base
        data = np.sum(data, axis=1).astype(np.uint8)
        fid.write(data.tobytes())
    fid.close()
    return

def load_vidar_dat(filename, frame_cnt=None, width=640, height=480, reverse_spike=True):
    '''

    output: <class 'numpy.ndarray'> (frame_cnt, height, width) {0,1} float32

    '''
    array = np.fromfile(filename, dtype=np.uint8)

    len_per_frame = height * width // 8
    framecnt = frame_cnt if frame_cnt != None else len(array) // len_per_frame

    spikes = []
    for i in range(framecnt):
        compr_frame = array[i * len_per_frame: (i + 1) * len_per_frame]
        blist = []
        for b in range(8):
            blist.append(np.right_shift(np.bitwise_and(
                compr_frame, np.left_shift(1, b)), b))

        frame_ = np.stack(blist).transpose()
        frame_ = frame_.reshape((height, width), order='C')
        if reverse_spike:
            frame_ = np.flipud(frame_)
        spikes.append(frame_)

    return np.array(spikes).astype(np.float32)


def RawToSpike(video_seq, h, w, flipud=True):

    video_seq = np.array(video_seq).astype(np.uint8)
    img_size = h*w
    img_num = len(video_seq)//(img_size//8)
    SpikeMatrix = np.zeros([img_num, h, w], np.uint8)
    pix_id = np.arange(0,h*w)
    pix_id = np.reshape(pix_id, (h, w))
    comparator = np.left_shift(1, np.mod(pix_id, 8))
    byte_id = pix_id // 8

    for img_id in np.arange(img_num):
        id_start = int(img_id)*int(img_size)//8
        id_end = int(id_start) + int(img_size)//8
        cur_info = video_seq[id_start:id_end]
        data = cur_info[byte_id]
        result = np.bitwise_and(data, comparator)
        if flipud:
            SpikeMatrix[img_id, :, :] = np.flipud((result == comparator))
        else:
            SpikeMatrix[img_id, :, :] = (result == comparator)

    return SpikeMatrix

def spikes_to_middletfi(spike, middle, window=50):
    C, H, W = spike.shape
    lindex, rindex = torch.zeros([H, W]), torch.zeros([H, W])
    l, r = middle+1, middle+1
    for r in range(middle+1, middle + window+1):
        l = l - 1
        if l>=0:
            newpos = spike[l, :, :]*(1 - torch.sign(lindex)) 
            distance = l*newpos
            lindex += distance
        if r<C:
            newpos = spike[r, :, :]*(1 - torch.sign(rindex))
            distance = r*newpos
            rindex += distance
        if l<0 and r>=C:
            break
    rindex[rindex == 0] = window + middle
    lindex[lindex == 0] = middle - window
    interval = rindex - lindex
    tfi = 1.0 / interval
    tfi = tfi.unsqueeze(0) 
    return tfi.float() 


def spikes_to_tfp(spike, idx, halfwsize):
    # real size of window == 2*halfwsize+1
    spike_ = spike[idx-halfwsize:idx+halfwsize]
    tfp_img = torch.mean(spike_, axis=0)
    spike_min, spike_max = torch.min(tfp_img), torch.max(tfp_img)
    tfp_img = (tfp_img - spike_min) / (spike_max - spike_min)
    return tfp_img



if __name__ == "__main__":
    spike_path = 'spike_0000000082.npy'
    spike_path = 'spike_0000000276.npy'
    for i in ["08", "26", "28"]:
        spike_path = f'C:/Users/lze/Desktop/dat/MDE_Dataset/Outdoor-Spike/seq_{i}.dat'

        f = open(spike_path, 'rb')
        spike_seq = f.read() 
        spike_seq = np.frombuffer(spike_seq, 'b')
        spikes = RawToSpike(spike_seq, 250, 400)
        spikes = spikes.astype(np.float32)
        spikes = torch.from_numpy(spikes)
        f.close()



        if i == "08":
            spikes = spikes[:, 15:-16, 89:-92]
        elif i == "26":
            spikes = spikes[:, 18:-18, 87:-99]
        elif i == "28":
            spikes = spikes[:, 13:-13, 88:-88]
            print(spikes.shape)
            quit()

        tfp = spikes_to_tfp(spikes, 10000, 100)
        print(tfp.shape)
        frame_to_plot = tfp.numpy()  # 将torch张量转换为numpy数组
        plt.imshow(frame_to_plot, cmap='gray')  # 使用灰度色图显示
        plt.savefig(f'{i}.png')
        


        # 8 28 26