File size: 8,733 Bytes
5fc3d65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import numpy as np
import os
import h5py
import cv2
import os.path as osp
import torch

import pandas as pd
from pprint import pprint
import matplotlib
import matplotlib.pyplot as plt
import torch.nn.functional as F


def resize(image, size):
    image = F.interpolate(image.unsqueeze(0), size=size, mode="nearest").squeeze(0)
    return image


def read_labels(label_path):
    labels_ids = []
    all_true_boxes = []
    with open(label_path, 'r') as sequence_ids:
        labels_ids.extend(map(str.strip, sequence_ids.readlines()))
        for i, sequence_id in enumerate(labels_ids):
            true_bounding_boxes = sequence_id.split(' ')[1:]
            if true_bounding_boxes == ['None']:
                all_true_boxes.append(None)
            else:  
                # print("boxesnum", len(true_bounding_boxes))
                true_bounding_boxes = [(int(box.split(',')[4]), int(box.split(',')[0]), int(box.split(',')[1]), 
                                        int(box.split(',')[2])-int(box.split(',')[0]), int(box.split(',')[3])-int(box.split(',')[1])) for box in true_bounding_boxes]
                # boxes_type={'names':('class_id','x','y','w','h'), 'formats':('u4','u4', 'u4','u4','u4')}
                true_bounding_boxes=np.array(true_bounding_boxes) # ,dtype=boxes_type
                all_true_boxes.append(true_bounding_boxes)
    return all_true_boxes




def read_PKUdataset_info_to_dict(file_path):
    xls = pd.ExcelFile(file_path)
    data_dict = {}
    for sheet_name in xls.sheet_names:
        df = xls.parse(sheet_name)
        sheet_data = df.set_index('sequence name').to_dict(orient='index')
        for key, value in sheet_data.items():
            if key not in data_dict:
                data_dict[key] = {}
            data_dict[key]['time length'] = value['time length (s)']
            data_dict[key]['start number'] = value['Vidar start number']
            data_dict[key]['end number'] = value['Vidar end number']
    return data_dict


    

def vis_event_image(image_data):
    cmap = matplotlib.colormaps['coolwarm']
    plt.imshow(image_data, cmap=cmap, vmin=-1, vmax=1)
    cbar = plt.colorbar(ticks=[-1, 0, 1])
    cbar.set_ticklabels(['Red', 'Neutral', 'Blue'])
    plt.title('Visualization of Image with -1, 0, 1')
    plt.savefig("vis_event.png", format='png')
    plt.close()


def get_sequences_ids(data_path):
    """

    getting ids from .txt file.

    args :

        - data_path: .txt file.

    return:

        - ids: the sequences from .txt file.

    """
    ids = []
    with open(data_path, 'r') as sequence_ids:
        ids.extend(map(str.strip, sequence_ids.readlines()))

    return ids


def load_vidar_dat(filename, frame_cnt=None, size=(480, 680), reverse_spike=True):
    '''

    output: <class 'numpy.ndarray'> (frame_cnt, height, width) {0,1} float32

    '''
    array = np.fromfile(filename, dtype=np.uint8)
    height, width = size
    len_per_frame = height * width // 8
    framecnt = frame_cnt if frame_cnt != None else len(array) // len_per_frame

    spikes = []
    for i in range(framecnt):
        compr_frame = array[i * len_per_frame: (i + 1) * len_per_frame]
        blist = []
        for b in range(8):
            blist.append(np.right_shift(np.bitwise_and(
                compr_frame, np.left_shift(1, b)), b))

        frame_ = np.stack(blist).transpose()
        frame_ = frame_.reshape((height, width), order='C')
        if reverse_spike:
            frame_ = np.flipud(frame_)
        spikes.append(frame_)

    return np.array(spikes).astype(np.float32)




def make_dir(path):
    if not osp.exists(path):
        os.makedirs(path)
    return

def RawToSpike(video_seq, h, w, flipud=True):
    video_seq = np.array(video_seq).astype(np.uint8)
    img_size = h*w
    img_num = len(video_seq)//(img_size//8)
    SpikeMatrix = np.zeros([img_num, h, w], np.uint8)
    pix_id = np.arange(0,h*w)
    pix_id = np.reshape(pix_id, (h, w))
    comparator = np.left_shift(1, np.mod(pix_id, 8))
    byte_id = pix_id // 8

    for img_id in np.arange(img_num):
        id_start = img_id*img_size//8
        id_end = id_start + img_size//8
        cur_info = video_seq[id_start:id_end]
        data = cur_info[byte_id]
        result = np.bitwise_and(data, comparator)
        if flipud:
            SpikeMatrix[img_id, :, :] = np.flipud((result == comparator))
        else:
            SpikeMatrix[img_id, :, :] = (result == comparator)

    return SpikeMatrix

def save_to_h5(SpikeMatrix, h5path):
    f = h5py.File(h5path, 'w')
    f['raw_spike'] = SpikeMatrix
    f.close()

def dat_to_h5(dat_path, h5path, size=[436, 1024]):
    f = open(dat_path, 'rb')
    video_seq = f.read()
    video_seq = np.frombuffer(video_seq, 'b')
    sp_mat = RawToSpike(video_seq, size[0], size[1])
    save_to_h5(sp_mat, h5path)


############################################################################
## General Read Function

def read_gen(file_name):
    ext = osp.splitext(file_name)[-1]
    if ext == '.png' or ext == '.jpeg' or ext == '.ppm' or ext == '.jpg':
        # return Image.open(file_name)
        return cv2.imread(file_name)
    elif ext == '.bin' or ext == '.raw':
        return np.load(file_name)
    elif ext == '.flo':
        return readFlow(file_name).astype(np.float32)
    return []


def im2gray(im):
    # im = np.array(im).astype(np.float32)[..., :3] / 255.
    # return cv2.cvtColor(im, cv2.COLOR_RGB2GRAY)
    im = im.astype(np.float32) / 255.
    im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
    im = np.expand_dims(im, axis=0)
    return im

def im_color(im):
    im = im.astype(np.float32) / 255.
    im = im.transpose([2, 0, 1])
    return im

TAG_CHAR = np.array([202021.25], np.float32)
def readFlow(fn):
    """ Read .flo file in Middlebury format"""
    # Code adapted from:
    # http://stackoverflow.com/questions/28013200/reading-middlebury-flow-files-with-python-bytes-array-numpy

    # WARNING: this will work on little-endian architectures (eg Intel x86) only!
    # print 'fn = %s'%(fn)
    with open(fn, 'rb') as f:
        magic = np.fromfile(f, np.float32, count=1)
        if 202021.25 != magic:
            print('Magic number incorrect. Invalid .flo file')
            return None
        else:
            w = np.fromfile(f, np.int32, count=1)
            h = np.fromfile(f, np.int32, count=1)
            # print 'Reading %d x %d flo file\n' % (w, h)
            data = np.fromfile(f, np.float32, count=2*int(w)*int(h))
            # Reshape data into 3D array (columns, rows, bands)
            # The reshape here is for visualization, the original code is (w,h,2)
            return np.resize(data, (int(h), int(w), 2))
        
from contextlib import contextmanager
import time
import torch

@contextmanager
def timeblock(label):
    torch.cuda.synchronize()
    start = time.perf_counter()
    try:
        yield
    finally:
        torch.cuda.synchronize()
        end = time.perf_counter()
        print('{} : {}'.format(label, end - start))

if __name__ == '__main__':
    img_unpadded = torch.randn(8, 1, 260, 346)
    img_padded = pad_to_square_and_32(img_unpadded, 0)
    print(img_unpadded.shape, img_padded.shape)


    info_dict = read_PKUdataset_info_to_dict('Dtracker/myaflow/dataset/statistics/PKU_Vidar_DVS_statistics.xlsx')
    scene = '00047_rotation_5000K_800r'
    ########
    ## spike
    # spike_dir = 'Dtracker_data/test/Vidar/00047_rotation_5000K_800r/'
    # spikes_paths = sorted(os.listdir(spike_dir), key=lambda x: int(os.path.basename(x).split(".")[0]))
    # spikes_paths_list = [osp.join(spike_dir, spikes_paths[i]) for i in range(len(spikes_paths))]
    # # pprint(spikes_paths_list)
    # spikes = [dat_to_spmat(p, size=(250, 400)) for p in spikes_paths_list]
    # print("len(spikes)", len(spikes), type(spikes), type(spikes[-1]))

    ########
    ## event
    # scene = '00505_UAV_outdoor6'
    # event_path = 'Dtracker_data/test/DVS/00047_rotation_5000K_800r.hdf5'
    # # event_path = 'Dtracker_data/test/DVS/00505_UAV_outdoor6.hdf5'
    # events = event_to_bins(event_path, temporal_length=info_dict[scene]['time length'], interval=0.02)
    # events = event_bins_to_image(events, height=260, width=346)
    # print("len(events)", len(events), type(events), type(events[-1]))

    ########
    ## label
    # label_path = 'Dtracker_data/test/labels/00047_rotation_5000K_800r.txt'
    # labels = read_labels(label_path)
    # # pprint(labels)
    # print("len(labels)", len(labels), type(labels), type(labels[-1]))