File size: 7,586 Bytes
5fc3d65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import argparse
import json
import logging
import os
from os.path import join
import cv2
import matplotlib as mpl
import matplotlib.cm as cm
import numpy as np
import torch
from SpikeT.model.S2DepthNet import S2DepthTransformerUNetConv
from SpikeT.utils.data_augmentation import CenterCrop, RandomCrop
logging.basicConfig(level=logging.INFO, format='')
def load_vidar_dat(filename, frame_cnt=None, width=640, height=480, reverse_spike=True):
'''
output: <class 'numpy.ndarray'> (frame_cnt, height, width) {0,1} float32
'''
array = np.fromfile(filename, dtype=np.uint8)
len_per_frame = height * width // 8
framecnt = frame_cnt if frame_cnt != None else len(array) // len_per_frame
spikes = []
for i in range(framecnt):
compr_frame = array[i * len_per_frame: (i + 1) * len_per_frame]
blist = []
for b in range(8):
blist.append(np.right_shift(np.bitwise_and(
compr_frame, np.left_shift(1, b)), b))
frame_ = np.stack(blist).transpose()
frame_ = frame_.reshape((height, width), order='C')
if reverse_spike:
frame_ = np.flipud(frame_)
spikes.append(frame_)
return np.array(spikes).astype(np.float32)
def RawToSpike(video_seq, h, w, flipud=True):
video_seq = np.array(video_seq).astype(np.uint8)
img_size = h*w
img_num = len(video_seq)//(img_size//8)
SpikeMatrix = np.zeros([img_num, h, w], np.uint8)
pix_id = np.arange(0,h*w)
pix_id = np.reshape(pix_id, (h, w))
comparator = np.left_shift(1, np.mod(pix_id, 8))
byte_id = pix_id // 8
for img_id in np.arange(img_num):
id_start = int(img_id)*int(img_size)//8
id_end = int(id_start) + int(img_size)//8
cur_info = video_seq[id_start:id_end]
data = cur_info[byte_id]
result = np.bitwise_and(data, comparator)
if flipud:
SpikeMatrix[img_id, :, :] = np.flipud((result == comparator))
else:
SpikeMatrix[img_id, :, :] = (result == comparator)
return SpikeMatrix
def ensure_dir(path):
if not os.path.exists(path):
os.makedirs(path)
def make_colormap(img, color_mapper):
color_map_inv = np.ones_like(img[0]) * np.amax(img[0]) - img[0]
color_map_inv = np.nan_to_num(color_map_inv, nan=1)
color_map_inv = color_map_inv / np.amax(color_map_inv)
color_map_inv = np.nan_to_num(color_map_inv)
color_map_inv = color_mapper.to_rgba(color_map_inv)
color_map_inv[:, :, 0:3] = color_map_inv[:, :, 0:3][..., ::-1]
return color_map_inv
def main(config, initial_checkpoint, spike_path):
use_phased_arch = config['use_phased_arch']
config['model']['gpu'] = config['gpu']
config['model']['every_x_rgb_frame'] = config['data_loader']['train']['every_x_rgb_frame']
config['model']['baseline'] = config['data_loader']['train']['baseline']
config['model']['loss_composition'] = config['trainer']['loss_composition']
model = eval(config['arch'])(config['model'])
if initial_checkpoint is not None:
print('Loading initial model weights from: {}'.format(initial_checkpoint))
checkpoint = torch.load(initial_checkpoint)
print(checkpoint['state_dict'])
model = torch.nn.DataParallel(model).cuda()
if use_phased_arch:
C, (H, W) = config["model"]["num_bins_events"], config["model"]["spatial_resolution"]
dummy_input = torch.Tensor(1, C, H, W)
times = torch.Tensor(1)
_ = model.forward(dummy_input, times=times, prev_states=None)
print(model.state_dict)
model.load_state_dict(checkpoint['state_dict'])
gpu = torch.device('cuda:' + str(config['gpu']))
model.to(gpu)
model.eval()
data_tranfsorm = CenterCrop(224)
# construct color mapper, such that same color map is used for all outputs.
f = open(spike_path, 'rb')
spike_seq = f.read()
spike_seq = np.frombuffer(spike_seq, 'b')
spikes = RawToSpike(spike_seq, 260, 346)
spikes = spikes.astype(np.float32)
spikes = torch.from_numpy(spikes)
f.close()
# spikes = load_vidar_dat(spike_path, width=400, height=250)
data = data_tranfsorm(spikes)
dT, dH, dW = data.shape
item = {}
item['image'] = data
input = {}
input['image'] = data[None, dT//2-64:dT//2+64]
prev_super_states = {'image': None}
prev_states_lstm = {}
new_predicted_targets, _, _ = model(input, prev_super_states['image'], prev_states_lstm)
frame = new_predicted_targets['image'][0].detach().cpu().numpy()
color_map_inv = np.ones_like(frame[0]) * np.amax(frame[0]) - frame[0]
color_map_inv = np.nan_to_num(color_map_inv, nan=1)
color_map_inv = color_map_inv / np.amax(color_map_inv)
color_map_inv = np.nan_to_num(color_map_inv)
vmax = np.percentile(color_map_inv, 95)
normalizer = mpl.colors.Normalize(vmin=color_map_inv.min(), vmax=vmax)
color_mapper_overall = cm.ScalarMappable(norm=normalizer, cmap='magma')
with torch.no_grad():
f = open(spike_path, 'rb')
spike_seq = f.read()
spike_seq = np.frombuffer(spike_seq, 'b')
spikes = RawToSpike(spike_seq, 260, 346)
spikes = spikes.astype(np.float32)
spikes = torch.from_numpy(spikes)
f.close()
data = data_tranfsorm(spikes)
print(data.shape)
dT, dH, dW = data.shape
item = {}
item['image'] = data
input = {}
input['image'] = data[None, dT//2-64:dT//2+64]
prev_super_states = {'image': None}
prev_states_lstm = {}
new_predicted_targets, _, _ = model(input, prev_super_states['image'], prev_states_lstm)
predict_depth = new_predicted_targets['image']
print(predict_depth.shape)
predict_depth = predict_depth[0].cpu().numpy()
img = predict_depth
cv2.imwrite(f'{os.path.basename(spike_path).split(".")[0]}_image.png', img[0][:, :, None] * 255.0)
spikes = data.permute(1,2,0).cpu().numpy()
input_spikes = np.mean(spikes, axis=2).astype(np.float32)
cv2.imwrite(f'{os.path.basename(spike_path).split(".")[0]}_spike.png', input_spikes[:, :, None] * 255.0)
# save color map
color_map = make_colormap(img, color_mapper_overall)
cv2.imwrite(f'{os.path.basename(spike_path).split(".")[0]}_colormap.png', color_map * 255.0)
if __name__ == '__main__':
logger = logging.getLogger()
parser = argparse.ArgumentParser(
description='Inference depth map from monocular spike stream')
parser.add_argument('--path_to_model', type=str,
help='path to the model weights',
default='SpikeT/s2d_weights/debug_A100_SpikeTransformerUNetConv_LocalGlobal-Swin3D-T/model_best.pth.tar')
parser.add_argument('--config', type=str,
help='path to config. If not specified, config from model folder is taken',
default=None)
parser.add_argument('--data_folder', type=str,
help='path to folder of data to be tested',
default=None)
args = parser.parse_args()
if args.config is None:
head_tail = os.path.split(args.path_to_model)
config = json.load(open(os.path.join(head_tail[0], 'config.json')))
else:
config = json.load(open(args.config))
spike_path = 'driving_outdoor0.dat'
spike_path = 'dense276.npy'
spike_path = 'dense082.npy'
main(config, args.path_to_model, f'asset/{spike_path}')
|