File size: 7,586 Bytes
5fc3d65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import argparse
import json
import logging
import os
from os.path import join

import cv2
import matplotlib as mpl
import matplotlib.cm as cm
import numpy as np
import torch
from SpikeT.model.S2DepthNet import S2DepthTransformerUNetConv
from SpikeT.utils.data_augmentation import CenterCrop, RandomCrop

logging.basicConfig(level=logging.INFO, format='')



def load_vidar_dat(filename, frame_cnt=None, width=640, height=480, reverse_spike=True):
    '''
    output: <class 'numpy.ndarray'> (frame_cnt, height, width) {0,1} float32
    '''
    array = np.fromfile(filename, dtype=np.uint8)

    len_per_frame = height * width // 8
    framecnt = frame_cnt if frame_cnt != None else len(array) // len_per_frame

    spikes = []
    for i in range(framecnt):
        compr_frame = array[i * len_per_frame: (i + 1) * len_per_frame]
        blist = []
        for b in range(8):
            blist.append(np.right_shift(np.bitwise_and(
                compr_frame, np.left_shift(1, b)), b))

        frame_ = np.stack(blist).transpose()
        frame_ = frame_.reshape((height, width), order='C')
        if reverse_spike:
            frame_ = np.flipud(frame_)
        spikes.append(frame_)

    return np.array(spikes).astype(np.float32)


def RawToSpike(video_seq, h, w, flipud=True):

    video_seq = np.array(video_seq).astype(np.uint8)
    img_size = h*w
    img_num = len(video_seq)//(img_size//8)
    SpikeMatrix = np.zeros([img_num, h, w], np.uint8)
    pix_id = np.arange(0,h*w)
    pix_id = np.reshape(pix_id, (h, w))
    comparator = np.left_shift(1, np.mod(pix_id, 8))
    byte_id = pix_id // 8

    for img_id in np.arange(img_num):
        id_start = int(img_id)*int(img_size)//8
        id_end = int(id_start) + int(img_size)//8
        cur_info = video_seq[id_start:id_end]
        data = cur_info[byte_id]
        result = np.bitwise_and(data, comparator)
        if flipud:
            SpikeMatrix[img_id, :, :] = np.flipud((result == comparator))
        else:
            SpikeMatrix[img_id, :, :] = (result == comparator)

    return SpikeMatrix


def ensure_dir(path):
    if not os.path.exists(path):
        os.makedirs(path)


def make_colormap(img, color_mapper):
    color_map_inv = np.ones_like(img[0]) * np.amax(img[0]) - img[0]
    color_map_inv = np.nan_to_num(color_map_inv, nan=1)
    color_map_inv = color_map_inv / np.amax(color_map_inv)
    color_map_inv = np.nan_to_num(color_map_inv)
    color_map_inv = color_mapper.to_rgba(color_map_inv)
    color_map_inv[:, :, 0:3] = color_map_inv[:, :, 0:3][..., ::-1]
    return color_map_inv


def main(config, initial_checkpoint, spike_path):
    use_phased_arch = config['use_phased_arch']
    
    config['model']['gpu'] = config['gpu']
    config['model']['every_x_rgb_frame'] = config['data_loader']['train']['every_x_rgb_frame']
    config['model']['baseline'] = config['data_loader']['train']['baseline']
    config['model']['loss_composition'] = config['trainer']['loss_composition']
    
    model = eval(config['arch'])(config['model'])
    if initial_checkpoint is not None:
        print('Loading initial model weights from: {}'.format(initial_checkpoint))
        checkpoint = torch.load(initial_checkpoint)
        print(checkpoint['state_dict'])
        model = torch.nn.DataParallel(model).cuda()
        if use_phased_arch:
            C, (H, W) = config["model"]["num_bins_events"], config["model"]["spatial_resolution"]
            dummy_input = torch.Tensor(1, C, H, W)
            times = torch.Tensor(1)
            _ = model.forward(dummy_input, times=times, prev_states=None)
        print(model.state_dict)
        model.load_state_dict(checkpoint['state_dict'])

    gpu = torch.device('cuda:' + str(config['gpu']))
    model.to(gpu)
    model.eval()

    data_tranfsorm = CenterCrop(224)

    # construct color mapper, such that same color map is used for all outputs.
    f = open(spike_path, 'rb')
    spike_seq = f.read()
    spike_seq = np.frombuffer(spike_seq, 'b')
    spikes = RawToSpike(spike_seq, 260, 346)
    spikes = spikes.astype(np.float32)
    spikes = torch.from_numpy(spikes)
    f.close()
    # spikes = load_vidar_dat(spike_path, width=400, height=250)
    data = data_tranfsorm(spikes)
    dT, dH, dW = data.shape
    item = {}
    item['image'] = data
    input = {}
    input['image'] = data[None, dT//2-64:dT//2+64]
    prev_super_states = {'image': None}
    prev_states_lstm = {}
    new_predicted_targets, _, _ = model(input, prev_super_states['image'], prev_states_lstm)
    
    frame = new_predicted_targets['image'][0].detach().cpu().numpy()
    color_map_inv = np.ones_like(frame[0]) * np.amax(frame[0]) - frame[0]
    color_map_inv = np.nan_to_num(color_map_inv, nan=1)
    color_map_inv = color_map_inv / np.amax(color_map_inv)
    color_map_inv = np.nan_to_num(color_map_inv)
    vmax = np.percentile(color_map_inv, 95)
    normalizer = mpl.colors.Normalize(vmin=color_map_inv.min(), vmax=vmax)
    color_mapper_overall = cm.ScalarMappable(norm=normalizer, cmap='magma')

    with torch.no_grad():
        f = open(spike_path, 'rb')
        spike_seq = f.read()
        spike_seq = np.frombuffer(spike_seq, 'b')
        spikes = RawToSpike(spike_seq, 260, 346)
        spikes = spikes.astype(np.float32)
        spikes = torch.from_numpy(spikes)
        f.close()
        data = data_tranfsorm(spikes)
        
        print(data.shape)
        dT, dH, dW = data.shape
        item = {}
        item['image'] = data
        input = {}
        input['image'] = data[None, dT//2-64:dT//2+64]
        prev_super_states = {'image': None}
        prev_states_lstm = {}
        
        new_predicted_targets, _, _ = model(input, prev_super_states['image'], prev_states_lstm)
        
        predict_depth = new_predicted_targets['image']
        print(predict_depth.shape)
        predict_depth = predict_depth[0].cpu().numpy()
        img = predict_depth
        cv2.imwrite(f'{os.path.basename(spike_path).split(".")[0]}_image.png', img[0][:, :, None] * 255.0)

        spikes = data.permute(1,2,0).cpu().numpy()
        input_spikes = np.mean(spikes, axis=2).astype(np.float32)
        cv2.imwrite(f'{os.path.basename(spike_path).split(".")[0]}_spike.png', input_spikes[:, :, None] * 255.0)

        # save color map
        color_map = make_colormap(img, color_mapper_overall)
        cv2.imwrite(f'{os.path.basename(spike_path).split(".")[0]}_colormap.png', color_map * 255.0)


if __name__ == '__main__':
    logger = logging.getLogger()
    parser = argparse.ArgumentParser(
        description='Inference depth map from monocular spike stream')
    parser.add_argument('--path_to_model', type=str,
                        help='path to the model weights',
                        default='SpikeT/s2d_weights/debug_A100_SpikeTransformerUNetConv_LocalGlobal-Swin3D-T/model_best.pth.tar')
    parser.add_argument('--config', type=str,
                        help='path to config. If not specified, config from model folder is taken',
                        default=None)
    parser.add_argument('--data_folder', type=str,
                        help='path to folder of data to be tested',
                        default=None)
    args = parser.parse_args()

    if args.config is None:
        head_tail = os.path.split(args.path_to_model)
        config = json.load(open(os.path.join(head_tail[0], 'config.json')))
    else:
        config = json.load(open(args.config))


    spike_path = 'driving_outdoor0.dat' 
    spike_path = 'dense276.npy'
    spike_path = 'dense082.npy'
    
    main(config, args.path_to_model, f'asset/{spike_path}')