|
import os
|
|
from collections import OrderedDict
|
|
import numpy as np
|
|
import math
|
|
from datetime import datetime
|
|
import random
|
|
import logging
|
|
import torch
|
|
from torchvision.utils import make_grid
|
|
import cv2
|
|
|
|
import yaml
|
|
try:
|
|
from yaml import CLoader as Loader, CDumper as Dumper
|
|
except ImportError:
|
|
from yaml import Loader, Dumper
|
|
|
|
|
|
IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png',
|
|
'.PNG', '.ppm', '.PPM', '.bmp', '.BMP', '.dat']
|
|
|
|
|
|
def is_image_file(filename):
|
|
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
|
|
|
|
|
|
def get_paths_from_images(path):
|
|
'''get image path list from image folder'''
|
|
assert os.path.isdir(path), '{:s} is not a valid directory'.format(path)
|
|
images = []
|
|
for dirpath, _, fnames in sorted(os.walk(path)):
|
|
for fname in sorted(fnames):
|
|
if is_image_file(fname):
|
|
img_path = os.path.join(dirpath, fname)
|
|
images.append(img_path)
|
|
assert images, '{:s} has no valid image file'.format(path)
|
|
return images
|
|
|
|
def OrderedYaml():
|
|
'''yaml orderedDict support'''
|
|
_mapping_tag = yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG
|
|
|
|
def dict_representer(dumper, data):
|
|
return dumper.represent_dict(data.items())
|
|
|
|
def dict_constructor(loader, node):
|
|
return OrderedDict(loader.construct_pairs(node))
|
|
|
|
Dumper.add_representer(OrderedDict, dict_representer)
|
|
Loader.add_constructor(_mapping_tag, dict_constructor)
|
|
return Loader, Dumper
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_timestamp():
|
|
return datetime.now().strftime('%y%m%d-%H%M%S')
|
|
|
|
|
|
def mkdir(path):
|
|
if not os.path.exists(path):
|
|
os.makedirs(path)
|
|
|
|
|
|
def mkdirs(paths):
|
|
if isinstance(paths, str):
|
|
mkdir(paths)
|
|
else:
|
|
for path in paths:
|
|
mkdir(path)
|
|
|
|
|
|
def mkdir_and_rename(path):
|
|
if os.path.exists(path):
|
|
new_name = path + '_archived_' + get_timestamp()
|
|
print('Path already exists. Rename it to [{:s}]'.format(new_name))
|
|
logger = logging.getLogger('base')
|
|
logger.info('Path already exists. Rename it to [{:s}]'.format(new_name))
|
|
os.rename(path, new_name)
|
|
os.makedirs(path)
|
|
|
|
|
|
def set_random_seed(seed):
|
|
random.seed(seed)
|
|
np.random.seed(seed)
|
|
torch.manual_seed(seed)
|
|
torch.cuda.manual_seed_all(seed)
|
|
|
|
|
|
def setup_logger(logger_name, root, phase, level=logging.INFO, screen=False, tofile=False):
|
|
'''set up logger'''
|
|
lg = logging.getLogger(logger_name)
|
|
formatter = logging.Formatter('%(asctime)s.%(msecs)03d - %(levelname)s: %(message)s',
|
|
datefmt='%y-%m-%d %H:%M:%S')
|
|
lg.setLevel(level)
|
|
if tofile:
|
|
log_file = os.path.join(root, phase + '_{}.log'.format(get_timestamp()))
|
|
fh = logging.FileHandler(log_file, mode='w')
|
|
fh.setFormatter(formatter)
|
|
lg.addHandler(fh)
|
|
if screen:
|
|
sh = logging.StreamHandler()
|
|
sh.setFormatter(formatter)
|
|
lg.addHandler(sh)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)):
|
|
'''
|
|
Converts a torch Tensor into an image Numpy array
|
|
Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order
|
|
Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default)
|
|
'''
|
|
tensor = tensor.squeeze().float().cpu().clamp_(*min_max)
|
|
tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0])
|
|
n_dim = tensor.dim()
|
|
if n_dim == 4:
|
|
n_img = len(tensor)
|
|
img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy()
|
|
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0))
|
|
elif n_dim == 3:
|
|
img_np = tensor.numpy()
|
|
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0))
|
|
elif n_dim == 2:
|
|
img_np = tensor.numpy()
|
|
else:
|
|
raise TypeError(
|
|
'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim))
|
|
if out_type == np.uint8:
|
|
img_np = (img_np * 255.0).round()
|
|
|
|
return img_np.astype(out_type)
|
|
|
|
def tensor2img_Real(tensor, out_type=np.uint8, min_max=(0, 1)):
|
|
'''
|
|
Converts a torch Tensor into an image Numpy array
|
|
Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order
|
|
Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default)
|
|
'''
|
|
tensor = tensor.squeeze().float().cpu().clamp_(*min_max)
|
|
tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0])
|
|
n_dim = tensor.dim()
|
|
if n_dim == 4:
|
|
|
|
|
|
img_np = tensor.numpy()
|
|
|
|
elif n_dim == 3:
|
|
img_np = tensor.numpy()
|
|
|
|
elif n_dim == 2:
|
|
img_np = tensor.numpy()
|
|
else:
|
|
raise TypeError(
|
|
'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim))
|
|
if out_type == np.uint8:
|
|
img_np = (img_np * 255.0).round()
|
|
|
|
return img_np.astype(out_type)
|
|
|
|
def save_img(img, img_path, mode='RGB'):
|
|
cv2.imwrite(img_path, img)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def calculate_psnr(img1, img2):
|
|
|
|
img1 = img1.astype(np.float64)
|
|
img2 = img2.astype(np.float64)
|
|
mse = np.mean((img1 - img2)**2)
|
|
if mse == 0:
|
|
return float('inf')
|
|
return 20 * math.log10(255.0 / math.sqrt(mse))
|
|
|
|
|
|
def ssim(img1, img2):
|
|
C1 = (0.01 * 255)**2
|
|
C2 = (0.03 * 255)**2
|
|
|
|
img1 = img1.astype(np.float64)
|
|
img2 = img2.astype(np.float64)
|
|
kernel = cv2.getGaussianKernel(11, 1.5)
|
|
window = np.outer(kernel, kernel.transpose())
|
|
|
|
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5]
|
|
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
|
|
mu1_sq = mu1**2
|
|
mu2_sq = mu2**2
|
|
mu1_mu2 = mu1 * mu2
|
|
sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
|
|
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
|
|
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
|
|
|
|
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
|
|
(sigma1_sq + sigma2_sq + C2))
|
|
return ssim_map.mean()
|
|
|
|
|
|
def calculate_ssim(img1, img2):
|
|
'''calculate SSIM
|
|
the same outputs as MATLAB's
|
|
img1, img2: [0, 255]
|
|
'''
|
|
if not img1.shape == img2.shape:
|
|
raise ValueError('Input images must have the same dimensions.')
|
|
if img1.ndim == 2:
|
|
return ssim(img1, img2)
|
|
elif img1.ndim == 3:
|
|
if img1.shape[2] == 3:
|
|
ssims = []
|
|
for i in range(3):
|
|
ssims.append(ssim(img1, img2))
|
|
return np.array(ssims).mean()
|
|
elif img1.shape[2] == 1:
|
|
return ssim(np.squeeze(img1), np.squeeze(img2))
|
|
else:
|
|
raise ValueError('Wrong input image dimensions.')
|
|
|
|
def calculate_epe(flow_pr, flow_gt, valid, max_flow=400):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
epe = torch.sum((flow_pr.detach().cpu() - flow_gt.detach().cpu())**2, dim=1).sqrt()
|
|
mag = torch.sum(flow_gt**2, dim=1).sqrt()
|
|
valid = (valid >= 0.5) & (mag < max_flow)
|
|
return epe.view(-1)[valid.view(-1)].numpy()
|
|
|
|
|
|
|
|
|
|
|
|
|