Update app.py
Browse files
app.py
CHANGED
@@ -3,138 +3,130 @@ import json
|
|
3 |
import os
|
4 |
import torch
|
5 |
import numpy as np
|
6 |
-
import
|
7 |
-
import matplotlib as mpl
|
8 |
import matplotlib.cm as cm
|
9 |
from SpikeT.model.S2DepthNet import S2DepthTransformerUNetConv
|
10 |
from SpikeT.utils.data_augmentation import CenterCrop
|
11 |
|
12 |
-
# ===
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
img_size = h * w
|
17 |
-
img_num = len(video_seq) // (img_size // 8)
|
18 |
-
SpikeMatrix = np.zeros([img_num, h, w], np.uint8)
|
19 |
-
pix_id = np.arange(0, h * w)
|
20 |
-
pix_id = np.reshape(pix_id, (h, w))
|
21 |
-
comparator = np.left_shift(1, np.mod(pix_id, 8))
|
22 |
-
byte_id = pix_id // 8
|
23 |
-
|
24 |
-
for img_id in np.arange(img_num):
|
25 |
-
id_start = int(img_id) * int(img_size) // 8
|
26 |
-
id_end = int(id_start) + int(img_size) // 8
|
27 |
-
cur_info = video_seq[id_start:id_end]
|
28 |
-
data = cur_info[byte_id]
|
29 |
-
result = np.bitwise_and(data, comparator)
|
30 |
-
if flipud:
|
31 |
-
SpikeMatrix[img_id, :, :] = np.flipud((result == comparator))
|
32 |
-
else:
|
33 |
-
SpikeMatrix[img_id, :, :] = (result == comparator)
|
34 |
-
|
35 |
-
return SpikeMatrix.astype(np.float32)
|
36 |
-
|
37 |
-
def make_colormap(img, color_mapper):
|
38 |
-
color_map_inv = np.ones_like(img[0]) * np.amax(img[0]) - img[0]
|
39 |
-
color_map_inv = np.nan_to_num(color_map_inv, nan=1)
|
40 |
-
color_map_inv = color_map_inv / np.amax(color_map_inv)
|
41 |
-
color_map_inv = np.nan_to_num(color_map_inv)
|
42 |
-
color_map_inv = color_mapper.to_rgba(color_map_inv)
|
43 |
-
color_map_inv[:, :, 0:3] = color_map_inv[:, :, 0:3][..., ::-1]
|
44 |
-
return color_map_inv
|
45 |
-
|
46 |
-
# === Load model and config (CPU only + 去掉 'module.') ===
|
47 |
-
device = torch.device("cpu")
|
48 |
|
|
|
49 |
model_path = 'SpikeT/s2d_weights/debug_A100_SpikeTransformerUNetConv_LocalGlobal-Swin3D-T/model_best.pth.tar'
|
50 |
config_path = os.path.join(os.path.dirname(model_path), 'config.json')
|
51 |
with open(config_path) as f:
|
52 |
config = json.load(f)
|
53 |
|
54 |
-
# 更新 config 結構
|
55 |
config['model']['gpu'] = config['gpu']
|
56 |
config['model']['every_x_rgb_frame'] = config['data_loader']['train']['every_x_rgb_frame']
|
57 |
config['model']['baseline'] = config['data_loader']['train']['baseline']
|
58 |
config['model']['loss_composition'] = config['trainer']['loss_composition']
|
59 |
|
60 |
-
# 建立模型
|
61 |
model = eval(config['arch'])(config['model'])
|
62 |
-
|
63 |
-
# 載入 checkpoint 並清理 DataParallel 的 'module.' 前綴
|
64 |
checkpoint = torch.load(model_path, map_location='cpu')
|
65 |
state_dict = checkpoint['state_dict']
|
66 |
cleaned_state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()}
|
67 |
model.load_state_dict(cleaned_state_dict)
|
68 |
model.eval()
|
69 |
-
model.to(
|
70 |
-
|
71 |
data_transform = CenterCrop(224)
|
72 |
|
73 |
-
#
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
dT, dH, dW = data.shape
|
90 |
-
|
91 |
prev_super_states = {'image': None}
|
92 |
prev_states_lstm = {}
|
93 |
|
94 |
with torch.no_grad():
|
95 |
-
|
96 |
-
|
97 |
spikes_np = data.permute(1, 2, 0).cpu().numpy()
|
98 |
spike_vis = np.mean(spikes_np, axis=2)
|
99 |
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
if __name__ == "__main__":
|
140 |
-
|
|
|
3 |
import os
|
4 |
import torch
|
5 |
import numpy as np
|
6 |
+
import matplotlib
|
|
|
7 |
import matplotlib.cm as cm
|
8 |
from SpikeT.model.S2DepthNet import S2DepthTransformerUNetConv
|
9 |
from SpikeT.utils.data_augmentation import CenterCrop
|
10 |
|
11 |
+
# === 設定 ===
|
12 |
+
DEVICE = torch.device("cpu")
|
13 |
+
title = "# Spike Transformer - Depth Estimation (CPU)"
|
14 |
+
description = "上傳 `.dat` 或 `.npy` spike 檔案,模型將重建 spike 圖並預測對應的深度圖"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
# === 載入模型與 config ===
|
17 |
model_path = 'SpikeT/s2d_weights/debug_A100_SpikeTransformerUNetConv_LocalGlobal-Swin3D-T/model_best.pth.tar'
|
18 |
config_path = os.path.join(os.path.dirname(model_path), 'config.json')
|
19 |
with open(config_path) as f:
|
20 |
config = json.load(f)
|
21 |
|
|
|
22 |
config['model']['gpu'] = config['gpu']
|
23 |
config['model']['every_x_rgb_frame'] = config['data_loader']['train']['every_x_rgb_frame']
|
24 |
config['model']['baseline'] = config['data_loader']['train']['baseline']
|
25 |
config['model']['loss_composition'] = config['trainer']['loss_composition']
|
26 |
|
|
|
27 |
model = eval(config['arch'])(config['model'])
|
|
|
|
|
28 |
checkpoint = torch.load(model_path, map_location='cpu')
|
29 |
state_dict = checkpoint['state_dict']
|
30 |
cleaned_state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()}
|
31 |
model.load_state_dict(cleaned_state_dict)
|
32 |
model.eval()
|
33 |
+
model.to(DEVICE)
|
|
|
34 |
data_transform = CenterCrop(224)
|
35 |
|
36 |
+
# === 工具函數 ===
|
37 |
+
def RawToSpike(video_seq, h, w, flipud=True):
|
38 |
+
video_seq = np.array(video_seq).astype(np.uint8)
|
39 |
+
img_size = h * w
|
40 |
+
img_num = len(video_seq) // (img_size // 8)
|
41 |
+
SpikeMatrix = np.zeros([img_num, h, w], np.uint8)
|
42 |
+
pix_id = np.arange(0, h * w).reshape((h, w))
|
43 |
+
comparator = np.left_shift(1, np.mod(pix_id, 8))
|
44 |
+
byte_id = pix_id // 8
|
45 |
+
for img_id in range(img_num):
|
46 |
+
id_start = img_id * img_size // 8
|
47 |
+
id_end = id_start + img_size // 8
|
48 |
+
cur_info = video_seq[id_start:id_end]
|
49 |
+
data = cur_info[byte_id]
|
50 |
+
result = np.bitwise_and(data, comparator)
|
51 |
+
SpikeMatrix[img_id] = np.flipud((result == comparator)) if flipud else (result == comparator)
|
52 |
+
return SpikeMatrix.astype(np.float32)
|
53 |
|
54 |
+
def load_spike_file(path):
|
55 |
+
if path.endswith(".npy"):
|
56 |
+
return np.load(path).astype(np.float32)
|
57 |
+
elif path.endswith(".dat"):
|
58 |
+
with open(path, 'rb') as f:
|
59 |
+
video_seq = np.frombuffer(f.read(), dtype='b')
|
60 |
+
return RawToSpike(video_seq, h=260, w=346)
|
61 |
+
else:
|
62 |
+
raise ValueError("Unsupported file format. Only .dat and .npy are supported.")
|
63 |
+
|
64 |
+
def predict_recon_bsf(spike, model, device):
|
65 |
+
spikes = torch.from_numpy(spike).to(device)
|
66 |
+
data = data_transform(spikes)
|
67 |
dT, dH, dW = data.shape
|
68 |
+
input_tensor = {'image': data[None, dT // 2 - 64: dT // 2 + 64].to(device)}
|
69 |
prev_super_states = {'image': None}
|
70 |
prev_states_lstm = {}
|
71 |
|
72 |
with torch.no_grad():
|
73 |
+
pred, _, _ = model(input_tensor, prev_super_states['image'], prev_states_lstm)
|
74 |
+
depth = pred['image'][0].cpu().numpy()
|
75 |
spikes_np = data.permute(1, 2, 0).cpu().numpy()
|
76 |
spike_vis = np.mean(spikes_np, axis=2)
|
77 |
|
78 |
+
return torch.tensor(spike_vis).unsqueeze(0), depth
|
79 |
+
|
80 |
+
# === Gradio 介面 ===
|
81 |
+
with gr.Blocks() as demo:
|
82 |
+
gr.Markdown(title)
|
83 |
+
gr.Markdown(description)
|
84 |
+
|
85 |
+
with gr.Row():
|
86 |
+
input_file = gr.File(label="Upload .dat or .npy Spike File", type="file")
|
87 |
+
output_spike = gr.Image(label="Reconstructed Spike Image")
|
88 |
+
output_depth = gr.Image(label="Depth Prediction (Colormap)")
|
89 |
+
|
90 |
+
cmap = matplotlib.colormaps.get_cmap('Spectral_r')
|
91 |
+
submit = gr.Button("Submit")
|
92 |
+
|
93 |
+
def on_submit(file_obj):
|
94 |
+
spike = load_spike_file(file_obj.name)
|
95 |
+
spike_img, depth = predict_recon_bsf(spike, model, DEVICE)
|
96 |
+
|
97 |
+
# 處理 spike 圖
|
98 |
+
spike_img = spike_img.repeat(3, 1, 1)
|
99 |
+
h, w = spike_img.shape[1:]
|
100 |
+
min_dim = min(h, w)
|
101 |
+
center_crop = spike_img[:, (h - min_dim) // 2:(h + min_dim) // 2, (w - min_dim) // 2:(w + min_dim) // 2]
|
102 |
+
spike_img_np = (center_crop.permute(1, 2, 0).numpy() * 255.0).astype(np.uint8)
|
103 |
+
|
104 |
+
# Colormap depth
|
105 |
+
depth = (depth - depth.min()) / (depth.max() - depth.min() + 1e-8) * 255.0
|
106 |
+
colored_depth = (cmap(depth.astype(np.uint8))[:, :, :3] * 255).astype(np.uint8)
|
107 |
+
|
108 |
+
return spike_img_np, colored_depth
|
109 |
+
|
110 |
+
submit.click(fn=on_submit, inputs=[input_file], outputs=[output_spike, output_depth])
|
111 |
+
|
112 |
+
# 示例資料(僅支援 .npy)
|
113 |
+
example_dir = "assets/examples"
|
114 |
+
if os.path.exists(example_dir):
|
115 |
+
example_files = sorted([
|
116 |
+
os.path.join(example_dir, f)
|
117 |
+
for f in os.listdir(example_dir)
|
118 |
+
if f.endswith(".npy") or f.endswith(".dat")
|
119 |
+
])
|
120 |
+
else:
|
121 |
+
example_files = []
|
122 |
+
|
123 |
+
gr.Examples(
|
124 |
+
examples=example_files,
|
125 |
+
inputs=[input_file],
|
126 |
+
outputs=[output_spike, output_depth],
|
127 |
+
fn=on_submit,
|
128 |
+
cache_examples=False
|
129 |
+
)
|
130 |
|
131 |
if __name__ == "__main__":
|
132 |
+
demo.queue().launch()
|