File size: 10,963 Bytes
9fa5305
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# -*- coding: utf-8 -*- 
# @Time : 2023/7/16 20:23 
# @Author : Yajing Zheng
# @Email: [email protected]
# @File : snn_tracker.py
import os, sys
sys.path.append('../..')
import time
import numpy as np
import torch

from spkProc.filters.stp_filters_torch import STPFilter
# from filters import stpFilter
from spkProc.detection.attention_select import SaccadeInput
from spkProc.motion.motion_detection import motion_estimation
from spkProc.detection.stdp_clustering import stdp_cluster
from utils import NumpyEncoder
from collections import namedtuple
import json
import cv2
from tqdm import tqdm

trajectories = namedtuple('trajectories', ['id', 'x', 'y', 't', 'color'])

class SNNTracker:

    def __init__(self, spike_h, spike_w, device, attention_size=20, diff_time=1, **STPargs):
        self.spike_h = spike_h
        self.spike_w = spike_w
        self.device = device

        # self.stp_filter = STPFilter(spike_h, spike_w, device)
        if STPargs is not None:
            self.stp_filter = STPFilter(spike_h, spike_w, device, diff_time, **STPargs)
        else:
            self.stp_filter = STPFilter(spike_h, spike_w, device, diff_time)
        # self.stp_filter = stpFilter()
        self.attention_size = attention_size
        self.object_detection = SaccadeInput(spike_h, spike_w, box_size=self.attention_size, device=device)
        from tensorboardX import SummaryWriter
        logger = SummaryWriter(log_dir='data/log_pkuvidar')
        self.motion_estimator = motion_estimation(spike_h, spike_w, device, logger=logger)
        # gpu_tracker.track()  # run function between the code line where uses GPU

        self.object_cluster = stdp_cluster(spike_h, spike_w, box_size=self.attention_size, device=device)

        # self.timestamps = spikes.shape[0]
        # self.filterd_spikes = np.zeros([self.timestamps, self.spike_h, self.spike_w], np.uint8)
        self.calibration_time = 150
        self.timestamps = 0
        self.trajectories = {}
        self.filterd_spikes = []

    def calibrate_motion(self, spikes, calibration_time=None):

        if calibration_time is None:
            calibration_time = self.calibration_time
        else:
            self.calibration_time = calibration_time

        print('begin calibrate..')
        for t in range(calibration_time):
            input_spk = torch.from_numpy(spikes[t, :, :]).to(self.device)
            self.stp_filter.update_dynamics(t, input_spk)
            self.timestamps += 1

    def get_results(self, spikes, res_filepath, mov_writer=None, save_video=False):

        result_file = open(res_filepath, 'a+')

        timestamps = spikes.shape[0]
        total_time = 0
        predict_kwargs = {'spike_h': self.spike_h, 'spike_w': self.spike_w, 'device': self.device}

        for t in tqdm(range(timestamps), desc=f'Saving tracking results to {str(result_file)}'):
            try:
                input_spk = torch.from_numpy(spikes[t, :, :]).to(self.device)
                self.stp_filter.update_dynamics(self.timestamps, input_spk)

                self.stp_filter.local_connect(self.stp_filter.filter_spk)
                # self.filterd_spikes[t, :, :] = self.stp_filter.lif_spk.cpu().detach().numpy()

                self.object_detection.update_dnf(self.stp_filter.lif_spk)
                attentionBox, attentionInput = self.object_detection.get_attention_location(self.stp_filter.lif_spk)
                # attentionInput = attentionInput.to(self.device)
                num_box = attentionBox.shape[0]
                self.motion_estimator.stdp_tracking(self.stp_filter.lif_spk)

                motion_id, motion_vector, _ = self.motion_estimator.local_wta(self.stp_filter.lif_spk, self.timestamps, visualize=True)
                # gpu_tracker.track()  # run function between the code line where uses GPU

                predict_fire, sw, bw = self.object_cluster.update_weight(attentionInput)

                predict_object = self.object_cluster.detect_object(predict_fire, attentionBox, motion_id, motion_vector, **predict_kwargs)

                # visualize_weights(sw, 'before update tracks', t)

                sw, bw = self.object_cluster.update_tracks(predict_object, sw, bw, self.timestamps)

                self.object_cluster.synaptic_weight = sw.detach().clone()
                self.object_cluster.bias_weight = bw.detach().clone()

                dets = torch.zeros((num_box, 6), dtype=torch.int)
                for i_box, bbox in enumerate(attentionBox):
                    dets[i_box, :] = torch.tensor([bbox[0], bbox[1], bbox[2], bbox[3], 1, 1])

                track_ids = []
                if save_video:
                    track_frame = self.stp_filter.lif_spk.cpu().numpy()
                    track_frame = (track_frame * 255).astype(np.uint8)
                    # track_frame = np.transpose(track_frame, (1, 2, 0))

                    # track_frame = np.tile(track_frame, (3, 1, 1))
                    # track_frame = np.squeeze(track_frame)
                    track_frame = cv2.cvtColor(track_frame, cv2.COLOR_GRAY2BGR)

                    for i_box in range(attentionBox.shape[0]):
                        tmp_box = attentionBox[i_box, :]
                        cv2.rectangle(track_frame, (int(tmp_box[1]), int(tmp_box[0])), (int(tmp_box[3]), int(tmp_box[2])),
                                           (int(0), int(0), int(255)), 2)

                for i_box in range(self.object_cluster.K2):
                    if self.object_cluster.tracks[i_box].visible == 1:
                        tmp_box = self.object_cluster.tracks[i_box].bbox.numpy()
                        pred_box = self.object_cluster.tracks[i_box].predbox.numpy()
                        id = self.object_cluster.tracks[i_box].id
                        color = self.object_cluster.tracks[i_box].color

                        # update the trajectories
                        mid_y = (tmp_box[0, 0] + tmp_box[0, 2]) / 2  # height
                        mid_x = (tmp_box[0, 1] + tmp_box[0, 3]) / 2  # width
                        box_w = int(tmp_box[0, 3] - tmp_box[0, 1])
                        box_h = int(tmp_box[0,2] - tmp_box[0, 0])
                        print('%d,%d,%.2f,%.2f,%.2f,%.2f,1,-1,-1,-1' % (
                            self.timestamps, id, tmp_box[0, 1], tmp_box[0, 0], box_w, box_h), file=result_file)

                        if id not in self.trajectories:
                            self.trajectories[id] = trajectories(int(id), [], [], [], 255 * np.random.rand(1, 3))
                            self.trajectories[id].x.append(mid_x)
                            self.trajectories[id].y.append(mid_y)
                            self.trajectories[id].t.append(self.timestamps)

                        else:
                            self.trajectories[id].x.append(mid_x)
                            self.trajectories[id].y.append(mid_y)
                            self.trajectories[id].t.append(self.timestamps)
                            # the detection results

                        if save_video:
                            cv2.rectangle(track_frame, (int(tmp_box[0, 1]), int(tmp_box[0, 0])),
                                          (int(tmp_box[0, 3]), int(tmp_box[0, 2])),
                                          (int(color[0, 0]), int(color[0, 1]), int(color[0, 2])), 2)

                            # # the predicted results
                            # cv2.rectangle(track_frame, (int(pred_box[0, 1]), int(pred_box[0, 0])),
                            #               (int(pred_box[0, 3]), int(pred_box[0, 2])), (int(0), int(0), int(255)), 2)

                            # the label box
                            cv2.rectangle(track_frame, (int(tmp_box[0, 1]), int(tmp_box[0, 0] - 35)),
                                          (int(tmp_box[0, 1] + 60), int(tmp_box[0, 0])),
                                          (int(color[0, 0]), int(color[0, 1]), int(color[0, 2])), -1)
                            if self.object_cluster.tracks[i_box].unvisible_count > 0:
                                show_text = 'predict' + str(id)
                            else:
                                show_text = 'object' + str(id)
                            cv2.putText(track_frame, show_text, (int(tmp_box[0, 1]), int(tmp_box[0, 0] - 10)),
                                        cv2.FONT_HERSHEY_SIMPLEX,
                                        1, (255, 255, 255), 2)

                if save_video:
                    cv2.putText(track_frame, str(int(self.timestamps)),
                                (10, 70), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 255), 2)
                    mov_writer.write(track_frame)
                self.timestamps += 1

            except RuntimeError as exception:
                if "out of memory" in str(exception):
                    print('WARNING: out of memory')
                    if hasattr(torch.cuda, 'empty_cache'):
                        torch.cuda.empty_cache()
                    else:
                        raise exception

        print('Total tracking took: %.3f seconds for %d timestamps spikes' %
              (total_time, self.timestamps - self.calibration_time))

        # if save_video:
        #     mov_writer.release()
        #     cv2.destroyAllWindows()

        result_file.close()

    def save_trajectory(self, results_dir, data_name):
        trajectories_filename = os.path.join(results_dir, data_name + '_py.json')
        mat_trajectories_filename = 'results/' + data_name + '.json'
        track_box_filename = 'results/' + data_name + '_bbox.json'

        if os.path.exists(trajectories_filename):
            os.remove(trajectories_filename)

        if os.path.exists(mat_trajectories_filename):
            os.remove(mat_trajectories_filename)

        if os.path.exists(track_box_filename):
            os.remove(track_box_filename)

        for i_traj in range(self.object_cluster.K2):
            tmp_traj = self.object_cluster.trajectories[i_traj]
            tmp_bbox = self.object_cluster.tracks_bbox[i_traj]

            traj_json_string = json.dumps(tmp_traj._asdict(), cls=NumpyEncoder)
            bbox_json_string = json.dumps(tmp_bbox._asdict(), cls=NumpyEncoder)

            with open(mat_trajectories_filename, 'a+') as f:
                f.write(traj_json_string)

            with open(track_box_filename, 'a+') as f:
                f.write(bbox_json_string)

        num_len = len(self.trajectories)
        for i_traj in self.trajectories:
            traj_json_string = json.dumps(self.trajectories[i_traj]._asdict(), cls=NumpyEncoder)

            with open(trajectories_filename, 'a+') as f:
                f.write(traj_json_string)

                f.write('\n')