File size: 7,185 Bytes
9fa5305
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import numpy as np
import torch
from spkProc.tracking.snn_tracker import SNNTracker
import matplotlib.pyplot as plt
import cv2


def load_vidar_dat(filename, frame_cnt=None, width=640, height=480, reverse_spike=True):
    '''

    output: <class 'numpy.ndarray'> (frame_cnt, height, width) {0,1} float32

    '''
    array = np.fromfile(filename, dtype=np.uint8)

    len_per_frame = height * width // 8
    framecnt = frame_cnt if frame_cnt != None else len(array) // len_per_frame

    spikes = []
    for i in range(framecnt):
        compr_frame = array[i * len_per_frame: (i + 1) * len_per_frame]
        blist = []
        for b in range(8):
            blist.append(np.right_shift(np.bitwise_and(
                compr_frame, np.left_shift(1, b)), b))

        frame_ = np.stack(blist).transpose()
        frame_ = frame_.reshape((height, width), order='C')
        if reverse_spike:
            frame_ = np.flipud(frame_)
        spikes.append(frame_)

    return np.array(spikes).astype(np.float32)



def detect_motion(spikes, calibration_frames=200, device=None):
    """

    使用SNN进行运动目标检测

    Args:

        spikes: shape为[frames, height, width]的脉冲数据

        calibration_frames: 用于校准的帧数

        device: 运行设备(CPU/GPU)

    Returns:

        motion_mask: 第calibration_frames帧的运动目标掩码

    """
    if device is None:
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    
    spike_h, spike_w = spikes.shape[1:]
    
    # 初始化SNN跟踪器
    spike_tracker = SNNTracker(spike_h, spike_w, device, attention_size=15)
    
    # 使用前calibration_frames帧进行校准
    calibration_spikes = spikes[:calibration_frames]
    spike_tracker.calibrate_motion(calibration_spikes, calibration_frames)
    
    # 获取第calibration_frames帧的运动检测结果
    target_frame = spikes[calibration_frames]
    target_frame = torch.from_numpy(target_frame).to(device)
    # target_frame = target_frame.reshape(1, 1, spike_h, spike_w)
    
    # 获取运动检测结果
    motion_id, motion_vector, _ = spike_tracker.motion_estimator.local_wta(target_frame, calibration_frames)
    
    # 生成运动掩码
    motion_mask = (motion_id > 0).cpu().numpy()
    
    return motion_mask

def spikes_to_tfi(spk_seq):
    n, h, w = spk_seq.shape
    last_index = np.zeros((1, h, w))
    cur_index = np.zeros((1, h, w))
    c_frames = np.zeros_like(spk_seq).astype(np.float64)
    for i in range(n - 1):
        last_index = cur_index
        cur_index = spk_seq[i+1,:,:] * (i + 1) + (1 - spk_seq[i+1,:,:]) * last_index
        c_frames[i,:,:] = cur_index - last_index
    last_frame = c_frames[n-1:,:]
    last_frame[last_frame==0] = n
    c_frames[n-1,:,:] = last_frame
    last_interval = n * np.ones((1, h, w))
    for i in range(n - 2, -1, -1):
        last_interval = spk_seq[i+1,:,:] * c_frames[i,:,:] + (1 - spk_seq[i+1,:,:]) * last_interval
        tmp_frame = np.expand_dims(c_frames[i,:,:], 0)
        tmp_frame[tmp_frame==0] = last_interval[tmp_frame==0]
        c_frames[i] = tmp_frame
    return 1.0 / c_frames

def detect_object(spikes, calibration_frames=200, device=None):
    """

    使用SNN进行目标检测

    Args:

        spikes: shape为[frames, height, width]的脉冲数据

        calibration_frames: 用于校准的帧数

        device: 运行设备(CPU/GPU)

    Returns:

        object_mask: 第calibration_frames帧的目标掩码

    """
    if device is None:
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    
    spike_h, spike_w = spikes.shape[1:]
    
    # 初始化SNN跟踪器
    spike_tracker = SNNTracker(spike_h, spike_w, device, attention_size=15)
    spike_tracker.object_cluster.K2 = 4

    # 使用前calibration_frames帧进行校准
    calibration_spikes = spikes[:calibration_frames]
    spike_tracker.calibrate_motion(calibration_spikes, calibration_frames)
    
    # 获取第calibration_frames帧的目标检测结果
    target_frame = spikes[calibration_frames: calibration_frames + 200]
    print(target_frame.shape)
    # target_frame = target_frame.reshape(1, 1, spike_h, spike_w)
    
    # 获取目标检测结果
    save_filename = "testtest.avi"
    mov = cv2.VideoWriter(save_filename, cv2.VideoWriter_fourcc(*'MJPG'), 30, (400, 250))
    spike_tracker.get_results(target_frame, save_filename, mov, save_video=True)
    
    mov.release()
    cv2.destroyAllWindows()
    return 0


if __name__ == "__main__":
    height = 250
    width = 400  
    spikes = load_vidar_dat("0.dat", width=width, height=height)
    for n in range(1,10):
        tmp_spikes = load_vidar_dat(f"{n}.dat", width=width, height=height)
        spikes = np.concatenate((spikes, tmp_spikes), axis=0)
    print(spikes.shape)

    spikes = spikes[::10]

    motion_mask = detect_object(spikes, calibration_frames=200)

    

    tfi = spikes_to_tfi(spikes)
    # 保存重建的视频
    save_recon_filename = "tfi.avi"
    recon_mov = cv2.VideoWriter(save_recon_filename, cv2.VideoWriter_fourcc(*'MJPG'), 30, (width, height))
    
    for frame in tfi:
        frame_norm = (frame * 255).astype(np.uint8)
        frame_rgb = cv2.cvtColor(frame_norm, cv2.COLOR_GRAY2BGR)
        recon_mov.write(frame_rgb)
    
    recon_mov.release()



    # 检测运动目标
    # motion_mask = detect_motion(spikes, calibration_frames=200)
    # print(f"Motion mask shape: {motion_mask.shape}")
    # print(f"Number of motion pixels: {motion_mask.sum()}") 

    # 可视化运动目标检测结果
    # plt.figure(figsize=(10, 5))
    # plt.subplot(1, 2, 1)
    # plt.imshow(spikes[200], cmap='gray')
    # plt.title("Input frame")
    # plt.axis('off')
    # plt.subplot(1, 2, 2)
    # plt.imshow(motion_mask, cmap='gray')
    # plt.title("Motion mask")
    # plt.axis('off')
    # plt.show()


    # 计算原始脉冲图和运动掩码之间的差异
    # spike_frame = spikes[200]  # 获取第200帧脉冲图
    
    # # 计算差异指标
    # pixel_diff = np.logical_xor(spike_frame > 0, motion_mask).sum()
    # total_pixels = height * width
    # diff_ratio = pixel_diff / total_pixels
    
    # print("\n运动检测结果分析:")
    # print(f"原始脉冲图中的活跃像素数: {(spike_frame > 0).sum()}")
    # print(f"运动掩码中的运动像素数: {motion_mask.sum()}")
    # print(f"不一致的像素数: {pixel_diff}")
    # print(f"像素差异比例: {diff_ratio:.2%}")
    
    # # 可视化差异
    # plt.figure(figsize=(10, 5))
    # plt.subplot(1, 2, 1)
    # plt.imshow(np.logical_xor(spike_frame > 0, motion_mask), cmap='gray')
    # plt.title("Difference map (white indicates inconsistency)")
    # plt.axis('off')
    
    # plt.subplot(1, 2, 2)
    # plt.imshow(spike_frame > 0, cmap='gray', alpha=0.5)
    # plt.imshow(motion_mask, cmap='Reds', alpha=0.5)
    # plt.title("Overlay (Red: Motion mask, Gray: Original spikes)")
    # plt.axis('off')
    # plt.show()