File size: 7,337 Bytes
9fa5305
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import sys
import numpy as np
import torch
import threading
import cv2
import json

# import matplotlib
# matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.pyplot import MultipleLocator


class dataReader(threading.Thread):
    def __init__(self, file_reader, device, q, is_dat=True, is_npy=False, filedir=None):
        super(dataReader, self).__init__()
        self.file_reader = file_reader
        self.device = device
        self.q = q
        self.is_dat = is_dat
        self.is_npy = is_npy
        self.filedir = filedir
        self.stream = torch.cuda.Stream()

    def run(self):
        with torch.cuda.stream(self.stream):
            for t in range(tnum):
                if self.is_dat:
                    ibuffer = self.file_reader.read(int(ivs_w * ivs_h / 8))
                    a = bin(int.from_bytes(ibuffer, byteorder=sys.byteorder))
                    a = a[2:].zfill(ivs_w * ivs_h)

                    a = list(a)
                    a = np.array(a, dtype=np.byte)
                    a = np.reshape(a, [ivs_h, ivs_w])
                    if ivs_h == 600:
                        a = np.flip(a, 0)
                    if ivs_h == 250:
                        a = np.flip(a, 1)
                    input_spk = torch.from_numpy(a != 0).to(device)
                elif self.is_npy:
                    npy_filename = self.filedir + str(t + 442) + '.npy'
                    tmp_data = np.load(npy_filename)
                    superResolution_rate = tmp_data.shape[2]
                    for i_data in range(superResolution_rate):
                        tmp_spk = tmp_data[:, :, i_data]
                        input_spk = torch.from_numpy(tmp_spk).to(device)
                        self.q.put(input_spk)

                else:
                    # img_filename = self.filedir + str(t + 4200) + '.png'
                    img_filename = self.filedir + 'spike_' + str(t + 1) + '.png'
                    # print('reading %d frames' % (t+1))
                    # print('reading %d frames' % (t+5000))
                    a = cv2.imread(img_filename)
                    a = cv2.cvtColor(a, cv2.COLOR_BGR2GRAY)
                    a = a / 255
                    a = np.array(a, dtype=np.byte)
                    input_spk = torch.from_numpy(a != 0).to(device)

                self.q.put(input_spk)


# obtain 2D gaussian filter
def get_kernel(filter_size, sigma):
    assert (filter_size + 1) % 2 == 0, '2D filter size must be odd number!'
    g = np.zeros((filter_size, filter_size), dtype=np.float32)
    half_width = int((filter_size - 1) / 2)
    # center location

    xc = (filter_size + 1) / 2
    yc = (filter_size + 1) / 2
    for i in range(-half_width, half_width + 1, 1):
        for j in range(-half_width, half_width + 1, 1):
            x = int(xc + i)
            y = int(yc + j)
            g[y - 1, x - 1] = np.exp(- (i ** 2 + j ** 2) / 2 / sigma / sigma)

    g = (g - g.min()) / (g.max() - g.min())
    return g


def get_transform_matrix(ori, speed):
    ori_num = len(ori)
    speed_num = len(speed)
    transform_matrix = torch.zeros(ori_num * speed_num, 2, 3)
    cnt = 0
    for iOri in range(ori_num):
        for iSpeed in range(speed_num):
            transform_matrix[cnt, 0, 0] = 1
            transform_matrix[cnt, 1, 1] = 1

            transform_matrix[cnt, 0, 2] = - float(ori[iOri, 1] * speed[iSpeed] / ivs_w)
            transform_matrix[cnt, 1, 2] = - float(ori[iOri, 0] * speed[iSpeed] / ivs_h)

            cnt += 1

    transform_matrix = transform_matrix.to(device)
    return transform_matrix


def get_transform_matrix_new(ori, speed, dvs_w, dvs_h, device):
    ori_num = len(ori)
    speed_num = len(speed)
    transform_matrix = torch.zeros(ori_num * speed_num, 2, 3)
    cnt = 0
    for iOri in range(ori_num):
        for iSpeed in range(speed_num):
            transform_matrix[cnt, 0, 0] = 1
            transform_matrix[cnt, 1, 1] = 1

            transform_matrix[cnt, 0, 2] = - float(ori[iOri, 1] * speed[iSpeed] / dvs_w)
            transform_matrix[cnt, 1, 2] = - float(ori[iOri, 0] * speed[iSpeed] / dvs_h)

            cnt += 1

    transform_matrix = transform_matrix.to(device)
    return transform_matrix


# monitor the inference process
def visualize_img(gray_img, tag, curT):
    gray_img = gray_img.float32()
    img = torch.unsqueeze(gray_img, 0)
    logger.add_image(tag, img, global_step=curT)


def visualize_images(images, tag, curT):
    if images.shape[0] < 1:
        return
    images = torch.squeeze(images)
    img_num = images.shape[-1]
    for iImg in range(img_num):
        tmp_img = images[:, :, iImg]
        tmp_img = torch.squeeze(tmp_img)
        tmp_img = torch.unsqueeze(tmp_img, 0)
        logger.add_image(tag + str(iImg), tmp_img, global_step=curT)


def visualize_weights(weights, tag, curT):
    if weights.shape[0] < 1:
        return
    weights = torch.squeeze(weights)
    weights_num = weights.shape[0]
    input_size = weights.shape[1]
    stim_size = int(np.sqrt(input_size))
    for iw in range(weights_num):
        tmp_w = weights[iw, :]
        tmp_w = torch.squeeze(tmp_w)
        tmp_w = (tmp_w - torch.min(tmp_w)) / (torch.max(tmp_w) - torch.min(tmp_w))
        tmp_w = torch.reshape(tmp_w, (stim_size, stim_size))
        tmp_w = torch.unsqueeze(tmp_w, 0)
        logger.add_image(tag + str(iw), tmp_w, global_step=curT)


class NumpyEncoder(json.JSONEncoder):
    def default(self, obj):
        if isinstance(obj, np.ndarray):
            return obj.tolist()
        return json.JSONEncoder.default(self, obj)


def vis_trajectory(json_file, filename, **dataDict):
    spike_h = dataDict.get('spike_h')
    spike_w = dataDict.get('spike_w')
    traj_dict = []
    with open(json_file, 'r') as f:
        for line in f.readlines():
            traj_dict.append(json.loads(line))

    num_traj = len(traj_dict)

    fig = plt.figure(figsize=[10, 6])
    ax = fig.add_subplot(111, projection='3d')
    min_t = 1000
    max_t = 0

    for tmp_traj in traj_dict:
        tmp_t = np.array(tmp_traj['t'])
        if np.min(tmp_t) < min_t:
            min_t = np.min(tmp_t)
        if np.max(tmp_t) > max_t:
            max_t = np.max(tmp_t)

        tmp_x = spike_w - np.array(tmp_traj['x'])
        tmp_y = np.array(tmp_traj['y'])
        tmp_color = np.array(tmp_traj['color']) / 255.
        ax.plot(tmp_t, tmp_x, tmp_y, color=tmp_color, linewidth=2, label='traj ' + str(tmp_traj['id']))

    ax.legend(loc='best', bbox_to_anchor=(0.7, 0., 0.4, 0.8))
    zoom = [2.2, 0.8, 0.5, 1]
    ax.get_proj = lambda: np.dot(Axes3D.get_proj(ax), np.diag([zoom[0], zoom[1], zoom[2], zoom[3]]))
    ax.set_xlim(min_t, max_t)
    ax.set_ylim(0, spike_w)
    ax.set_zlim(0, spike_h)

    ax.set_xlabel('time', fontsize=15)
    ax.set_ylabel('width', fontsize=15)
    ax.set_zlabel('height', fontsize=15)

    ax.view_init(elev=16, azim=135)
    ax.yaxis.set_major_locator(MultipleLocator(100))
    fig.subplots_adjust(top=1., bottom=0., left=0.2, right=1.)
    # fig.tight_layout()
    plt.show()
    plt.savefig(filename, dpi=500, transparent=True)