zzzzzeee's picture
Upload 28 files
9fa5305 verified
# -*- coding: utf-8 -*-
# @Time : 2022/6/12 15:21
# @Author : Yajing Zheng
# @File : visualize.py
import cv2
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import matplotlib.animation as animation
def obtain_spike_video(spikes, video_filename, **dataDict):
spike_h = dataDict.get('spike_h')
spike_w = dataDict.get('spike_w')
timestamps = spikes.shape[0]
mov = cv2.VideoWriter(video_filename, cv2.VideoWriter_fourcc(*'MJPG'), 30, (spike_w, spike_h))
for iSpk in range(timestamps):
tmpSpk = spikes[iSpk, :, :] * 255
tmpSpk = cv2.cvtColor(tmpSpk.astype(np.uint8), cv2.COLOR_GRAY2BGR)
mov.write(tmpSpk)
mov.release()
def obtain_reconstruction_video(images, video_filename, **dataDict):
spike_h = dataDict.get('spike_h')
spike_w = dataDict.get('spike_w')
img_num = images.shape[0]
mov = cv2.VideoWriter(video_filename, cv2.VideoWriter_fourcc(*'MJPG'), 30, (spike_w, spike_h))
for iImg in range(img_num):
tmp_img = images[iImg, :, :]
tmp_img = cv2.cvtColor(tmp_img, cv2.COLOR_GRAY2BGR)
mov.write(tmp_img)
mov.release()
def obtain_mot_video(spikes, video_filename, res_filepath, **dataDict):
spike_h = dataDict.get('spike_h')
spike_w = dataDict.get('spike_w')
gt_file = dataDict.get('labeled_data_dir')
gt_boxes = {}
if gt_file is not None:
gt_f = open(gt_file, 'r')
gt_lines = gt_f.readlines()
for line in gt_lines:
gt_term = line.split(',')
time_step = gt_term[0]
box_id = gt_term[1]
x = float(gt_term[2])
y = float(gt_term[3])
w = float(gt_term[4])
h = float(gt_term[5])
if str(time_step) not in gt_boxes:
gt_boxes[str(time_step)] = []
bbox = [box_id, x, y, w, h]
gt_boxes[str(time_step)].append(bbox)
gt_f.close()
result_file = res_filepath
test_boxes = {}
result_f = open(result_file, 'r')
result_lines = result_f.readlines()
color_dict = {}
for line in result_lines:
res_box = line.split(',')
time_step = res_box[0]
track_id = res_box[1]
if track_id not in color_dict.keys():
colors = (np.random.rand(1, 3) * 255).astype(np.uint8)
color_dict[track_id] = np.squeeze(colors)
x = float(res_box[2])
y = float(res_box[3])
w = float(res_box[4])
h = float(res_box[5])
if str(time_step) not in test_boxes:
test_boxes[str(time_step)] = []
test_box = [track_id, x, y, w, h]
test_boxes[str(time_step)].append(test_box)
result_f.close()
mov = cv2.VideoWriter(video_filename, cv2.VideoWriter_fourcc(*'MJPG'), 30, (spike_w, spike_h))
timestamps = spikes.shape[0]
for t in range(151, timestamps):
# for t in range(160, 1000):
tmp_ivs = spikes[t, :, :] * 255
tmp_ivs = cv2.cvtColor(tmp_ivs.astype(np.uint8), cv2.COLOR_GRAY2BGR)
if len(gt_boxes) > 0:
if str(t) in gt_boxes:
gts = gt_boxes[str(t)]
gt_num = len(gts)
for i in range(gt_num):
box = gts[i]
box_id = box[0]
cv2.rectangle(tmp_ivs, (int(box[2]), int(box[1])),
(int(box[2] + box[4]), int(box[1] + box[3])),
(int(255), int(255), int(255)), 2)
if str(t) in test_boxes:
test = test_boxes[str(t)]
test_num = len(test)
for i in range(test_num):
box = test[i]
box_id = box[0]
colors = color_dict[box_id]
cv2.rectangle(tmp_ivs, (int(box[2]), int(box[1])),
(int(box[2] + box[4]), int(box[1] + box[3])),
(int(colors[0]), int(colors[1]), int(colors[2])), 2)
mov.write(tmp_ivs)
mov.release()
def obtain_detection_video(spikes, video_filename, res_filepath, evaluate_seq_len, begin_idx=0, **dataDict):
spike_h = dataDict.get('spike_h')
spike_w = dataDict.get('spike_w')
gt_file = dataDict.get('labeled_data_dir')
gt_boxes = {}
if gt_file is not None:
start_idx = begin_idx
end_idx = begin_idx + evaluate_seq_len
for seq_no in range(start_idx, end_idx):
gt_filename = gt_file[seq_no]
gt_f = open(gt_filename, 'r')
gt_lines = gt_f.readlines()
for line in gt_lines:
tmp_box = line.split(',')
x = float(tmp_box[0])
y = float(tmp_box[1])
w = float(tmp_box[2])
h = float(tmp_box[3])
box_id = int(0)
if str(seq_no) not in gt_boxes:
gt_boxes[str(seq_no)] = []
bbox = [box_id, x, y, w, h]
gt_boxes[str(seq_no)].append(bbox)
gt_f.close()
result_file = res_filepath
test_boxes = {}
result_f = open(result_file, 'r')
result_lines = result_f.readlines()
color_dict = {}
for line in result_lines:
res_box = line.split(',')
time_step = res_box[0]
track_id = res_box[1]
if track_id not in color_dict.keys():
colors = (np.random.rand(1, 3) * 255).astype(np.uint8)
color_dict[track_id] = np.squeeze(colors)
x = float(res_box[2])
y = float(res_box[3])
w = float(res_box[4])
h = float(res_box[5])
if str(time_step) not in test_boxes:
test_boxes[str(time_step)] = []
test_box = [track_id, x, y, w, h]
test_boxes[str(time_step)].append(test_box)
result_f.close()
mov = cv2.VideoWriter(video_filename, cv2.VideoWriter_fourcc(*'MJPG'), 30, (spike_w, spike_h))
block_len = spikes.shape[0]
# gt_intv = int(block_len/evaluate_seq_len)
gt_intv = 400
# for t in range(150, block_len):
for i_gt in range(start_idx+1, end_idx):
t = i_gt * gt_intv + int(gt_intv/2)
tmp_ivs = spikes[t, :, :] * 255
tmp_ivs = cv2.cvtColor(tmp_ivs.astype(np.uint8), cv2.COLOR_GRAY2BGR)
if len(gt_boxes) > 0:
gts = gt_boxes[str(i_gt)]
gt_num = len(gts)
for i in range(gt_num):
box = gts[i]
cv2.rectangle(tmp_ivs, (int(spike_w - box[1]), int(box[2])),
(int(spike_w - box[1] - box[3]), int(box[2] + box[4])),
(int(255), int(255), int(255)), 2)
if str(t) in test_boxes:
test = test_boxes[str(t)]
test_num = len(test)
for i in range(test_num):
box = test[i]
box_id = box[0]
colors = color_dict[box_id]
cv2.rectangle(tmp_ivs, (int(box[2]), int(box[1])),
(int(box[2] + box[4]), int(box[1] + box[3])),
(int(colors[0]), int(colors[1]), int(colors[2])), 2)
mov.write(tmp_ivs)
mov.release()
def get_heatVideo(results, video_filename):
results = np.array(results)
frame_num = results.shape[0]
frames = []
fig = plt.figure()
for i in range(frame_num):
tmp_res = results[i]
# frames.append([plt.imshow(tmp_res, cmap=cm.Greys_r, animated=True)])
frames.append([plt.imshow(tmp_res, cmap=cm.Blues, animated=True)])
ani = animation.ArtistAnimation(fig, frames, interval=50, blit=True,
repeat_delay=1000)
# change the path to where you save ffmpeg
plt.rcParams['animation.ffmpeg_path'] = 'F:\\ffmpeg-N-99818-g993429cfb4-win64-gpl-shared-vulkan\\bin\\ffmpeg.exe'
FFwrite = animation.FFMpegWriter(fps=30, extra_args=['-vcodec', 'libx264'])
ani.save(video_filename, writer=FFwrite)
plt.show()