test_embedding_shape / snnTracker /visualization /optical_flow_visualization.py
zzzzzeee's picture
Upload 28 files
9fa5305 verified
# -*- coding: utf-8 -*-
# @Time : 2022/7/21
# @Author : Rui Zhao
# @File : optical_flow_visualization.py
import torch
import numpy as np
import cv2
import math
#################### Interface ####################
def flow_visualization(flow, mode='normal', use_cv2=True):
if mode == 'normal':
flow_vis = flow_to_image(flow_uv=flow, convert_to_bgr=use_cv2)
elif mode == 'scflow':
flow_vis = flow_to_img_scflow(flow_uv=flow)
if not use_cv2:
flow_vis = cv2.cvtColor(flow_vis, cv2.COLOR_BGR2RGB)
elif mode == 'evflow':
flow_vis = flow_viz_np(flow_x=flow[:,:,0], flow_y=flow[:,:,1])
return flow_vis
def vis_color_map(use_cv2=True):
u = np.linspace(-100, 99, 200)
v = np.linspace(-100, 99, 200)
xx, yy = np.meshgrid(u, v)
flow = np.concatenate((xx[:,:,None], yy[:,:,None]), axis=2)
map_normal = flow_visualization(flow=flow, mode='normal', use_cv2=use_cv2)
map_scflow = flow_visualization(flow=flow, mode='scflow', use_cv2=use_cv2)
map_evflow = flow_visualization(flow=flow, mode='evflow', use_cv2=use_cv2)
return [map_normal, map_scflow, map_evflow]
def make_colorwheel():
"""
Generates a color wheel for optical flow visualization as presented in:
Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007)
URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf
Code follows the original C++ source code of Daniel Scharstein.
Code follows the the Matlab source code of Deqing Sun.
Returns:
np.ndarray: Color wheel
"""
RY = 15
YG = 6
GC = 4
CB = 11
BM = 13
MR = 6
ncols = RY + YG + GC + CB + BM + MR
colorwheel = np.zeros((ncols, 3))
col = 0
# RY
colorwheel[0:RY, 0] = 255
colorwheel[0:RY, 1] = np.floor(255*np.arange(0,RY)/RY)
col = col+RY
# YG
colorwheel[col:col+YG, 0] = 255 - np.floor(255*np.arange(0,YG)/YG)
colorwheel[col:col+YG, 1] = 255
col = col+YG
# GC
colorwheel[col:col+GC, 1] = 255
colorwheel[col:col+GC, 2] = np.floor(255*np.arange(0,GC)/GC)
col = col+GC
# CB
colorwheel[col:col+CB, 1] = 255 - np.floor(255*np.arange(CB)/CB)
colorwheel[col:col+CB, 2] = 255
col = col+CB
# BM
colorwheel[col:col+BM, 2] = 255
colorwheel[col:col+BM, 0] = np.floor(255*np.arange(0,BM)/BM)
col = col+BM
# MR
colorwheel[col:col+MR, 2] = 255 - np.floor(255*np.arange(MR)/MR)
colorwheel[col:col+MR, 0] = 255
return colorwheel
#################### Normal Version ####################
"""
From https://github.com/princeton-vl/RAFT/blob/master/core/utils/flow_viz.py
"""
def flow_uv_to_colors(u, v, convert_to_bgr=False):
"""
Applies the flow color wheel to (possibly clipped) flow components u and v.
According to the C++ source code of Daniel Scharstein
According to the Matlab source code of Deqing Sun
Args:
u (np.ndarray): Input horizontal flow of shape [H,W]
v (np.ndarray): Input vertical flow of shape [H,W]
convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.
Returns:
np.ndarray: Flow visualization image of shape [H,W,3]
"""
flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8)
colorwheel = make_colorwheel() # shape [55x3]
ncols = colorwheel.shape[0]
rad = np.sqrt(np.square(u) + np.square(v))
a = np.arctan2(-v, -u)/np.pi
fk = (a+1) / 2*(ncols-1)
k0 = np.floor(fk).astype(np.int32)
k1 = k0 + 1
k1[k1 == ncols] = 0
f = fk - k0
for i in range(colorwheel.shape[1]):
tmp = colorwheel[:,i]
col0 = tmp[k0] / 255.0
col1 = tmp[k1] / 255.0
col = (1-f)*col0 + f*col1
idx = (rad <= 1)
col[idx] = 1 - rad[idx] * (1-col[idx])
col[~idx] = col[~idx] * 0.75 # out of range
# Note the 2-i => BGR instead of RGB
ch_idx = 2-i if convert_to_bgr else i
flow_image[:,:,ch_idx] = np.floor(255 * col)
return flow_image
def flow_to_image(flow_uv, clip_flow=None, convert_to_bgr=False):
"""
Expects a two dimensional flow image of shape.
Args:
flow_uv (np.ndarray): Flow UV image of shape [H,W,2]
clip_flow (float, optional): Clip maximum of flow values. Defaults to None.
convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.
Returns:
np.ndarray: Flow visualization image of shape [H,W,3]
"""
assert flow_uv.ndim == 3, 'input flow must have three dimensions'
assert flow_uv.shape[2] == 2, 'input flow must have shape [H,W,2]'
if clip_flow is not None:
flow_uv = np.clip(flow_uv, 0, clip_flow)
u = flow_uv[:,:,0]
v = flow_uv[:,:,1]
rad = np.sqrt(np.square(u) + np.square(v))
rad_max = np.max(rad)
epsilon = 1e-5
u = u / (rad_max + epsilon)
v = v / (rad_max + epsilon)
return flow_uv_to_colors(u, v, convert_to_bgr)
#################### SCFlow Version ####################
def flow_uv_to_colors_scflow(u, v, convert_to_bgr=False):
"""
Applies the flow color wheel to (possibly clipped) flow components u and v.
According to the C++ source code of Daniel Scharstein
According to the Matlab source code of Deqing Sun
Args:
u (np.ndarray): Input horizontal flow of shape [H,W]
v (np.ndarray): Input vertical flow of shape [H,W]
convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.
Returns:
np.ndarray: Flow visualization image of shape [H,W,3]
"""
flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8)
colorwheel = make_colorwheel() # shape [55x3]
ncols = colorwheel.shape[0]
rad = np.sqrt(np.square(u) + np.square(v))
a = np.arctan2(-v, u)/np.pi
fk = (a+1) / 2*(ncols-1)
k0 = np.floor(fk).astype(np.int32)
k1 = k0 + 1
k1[k1 == ncols] = 0
f = fk - k0
for i in range(colorwheel.shape[1]):
tmp = colorwheel[:,i]
col0 = tmp[k0] / 255.0
col1 = tmp[k1] / 255.0
col = (1-f)*col0 + f*col1
idx = (rad <= 1)
col[idx] = 1 - rad[idx] * (1-col[idx])
col[~idx] = col[~idx] * 0.75 # out of range
# Note the 2-i => BGR instead of RGB
ch_idx = 2-i if convert_to_bgr else i
flow_image[:,:,ch_idx] = np.floor(255 * col)
return flow_image
def flow_to_img_scflow(flow_uv, clip_flow=None):
"""
Expects a two dimensional flow image of shape.
Args:
flow_uv (np.ndarray): Flow UV image of shape [H,W,2]
clip_flow (float, optional): Clip maximum of flow values. Defaults to None.
Returns:
np.ndarray: Flow visualization image of shape [H,W,3]
"""
convert_to_bgr = False
assert flow_uv.ndim == 3, 'input flow must have three dimensions'
assert flow_uv.shape[2] == 2, 'input flow must have shape [H,W,2]'
if clip_flow is not None:
flow_uv = np.clip(flow_uv, 0, clip_flow)
u = flow_uv[:,:,0]
v = flow_uv[:,:,1]
rad = np.sqrt(np.square(u) + np.square(v))
rad_max = np.max(rad)
epsilon = 1e-5
u = u / (rad_max + epsilon)
v = v / (rad_max + epsilon)
return flow_uv_to_colors_scflow(u, v, convert_to_bgr)
#################### EVFlow Version ####################
"""
From https://github.com/chan8972/Spike-FlowNet/blob/master/vis_utils.py
"""
"""
Generates an RGB image where each point corresponds to flow in that direction from the center,
as visualized by flow_viz_tf.
Output: color_wheel_rgb: [1, width, height, 3]
"""
def draw_color_wheel_np(width, height):
color_wheel_x = np.linspace(-width / 2.,width / 2.,width)
color_wheel_y = np.linspace(-height / 2.,height / 2.,height)
color_wheel_X, color_wheel_Y = np.meshgrid(color_wheel_x, color_wheel_y)
color_wheel_rgb = flow_viz_np(color_wheel_X, color_wheel_Y)
return color_wheel_rgb
"""
Visualizes optical flow in HSV space using TensorFlow, with orientation as H, magnitude as V.
Returned as RGB.
Input: flow: [batch_size, width, height, 2]
Output: flow_rgb: [batch_size, width, height, 3]
"""
def flow_viz_np(flow_x, flow_y):
import cv2
flows = np.stack((flow_x, flow_y), axis=2)
mag = np.linalg.norm(flows, axis=2)
ang = np.arctan2(flow_y, flow_x)
ang += np.pi
ang *= 180. / np.pi / 2.
ang = ang.astype(np.uint8)
hsv = np.zeros([flow_x.shape[0], flow_x.shape[1], 3], dtype=np.uint8)
hsv[:, :, 0] = ang
hsv[:, :, 1] = 255
hsv[:, :, 2] = cv2.normalize(mag, None, 0, 255, cv2.NORM_MINMAX)
flow_rgb = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
return flow_rgb
#################### Visualization tools when training SCFlow ####################
def outflow_img(flow_list, vis_path, name_prefix='flow', max_batch=4):
flow = flow_list[0]
batch_size, c, h, w = flow.shape
for batch in range(batch_size):
if batch > max_batch:
break
flow_current = flow[batch,:,:,:].permute(1,2,0).detach().cpu().numpy()
flow_img = flow_visualization(flow_current, mode='scflow', use_cv2=True)
cv2.imwrite(vis_path + '/{:s}_batch_id={:02d}.png'.format(name_prefix, batch), flow_img)
return