Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
# @Time : 2022/7/21 | |
# @Author : Rui Zhao | |
# @File : optical_flow_visualization.py | |
import torch | |
import numpy as np | |
import cv2 | |
import math | |
#################### Interface #################### | |
def flow_visualization(flow, mode='normal', use_cv2=True): | |
if mode == 'normal': | |
flow_vis = flow_to_image(flow_uv=flow, convert_to_bgr=use_cv2) | |
elif mode == 'scflow': | |
flow_vis = flow_to_img_scflow(flow_uv=flow) | |
if not use_cv2: | |
flow_vis = cv2.cvtColor(flow_vis, cv2.COLOR_BGR2RGB) | |
elif mode == 'evflow': | |
flow_vis = flow_viz_np(flow_x=flow[:,:,0], flow_y=flow[:,:,1]) | |
return flow_vis | |
def vis_color_map(use_cv2=True): | |
u = np.linspace(-100, 99, 200) | |
v = np.linspace(-100, 99, 200) | |
xx, yy = np.meshgrid(u, v) | |
flow = np.concatenate((xx[:,:,None], yy[:,:,None]), axis=2) | |
map_normal = flow_visualization(flow=flow, mode='normal', use_cv2=use_cv2) | |
map_scflow = flow_visualization(flow=flow, mode='scflow', use_cv2=use_cv2) | |
map_evflow = flow_visualization(flow=flow, mode='evflow', use_cv2=use_cv2) | |
return [map_normal, map_scflow, map_evflow] | |
def make_colorwheel(): | |
""" | |
Generates a color wheel for optical flow visualization as presented in: | |
Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007) | |
URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf | |
Code follows the original C++ source code of Daniel Scharstein. | |
Code follows the the Matlab source code of Deqing Sun. | |
Returns: | |
np.ndarray: Color wheel | |
""" | |
RY = 15 | |
YG = 6 | |
GC = 4 | |
CB = 11 | |
BM = 13 | |
MR = 6 | |
ncols = RY + YG + GC + CB + BM + MR | |
colorwheel = np.zeros((ncols, 3)) | |
col = 0 | |
# RY | |
colorwheel[0:RY, 0] = 255 | |
colorwheel[0:RY, 1] = np.floor(255*np.arange(0,RY)/RY) | |
col = col+RY | |
# YG | |
colorwheel[col:col+YG, 0] = 255 - np.floor(255*np.arange(0,YG)/YG) | |
colorwheel[col:col+YG, 1] = 255 | |
col = col+YG | |
# GC | |
colorwheel[col:col+GC, 1] = 255 | |
colorwheel[col:col+GC, 2] = np.floor(255*np.arange(0,GC)/GC) | |
col = col+GC | |
# CB | |
colorwheel[col:col+CB, 1] = 255 - np.floor(255*np.arange(CB)/CB) | |
colorwheel[col:col+CB, 2] = 255 | |
col = col+CB | |
# BM | |
colorwheel[col:col+BM, 2] = 255 | |
colorwheel[col:col+BM, 0] = np.floor(255*np.arange(0,BM)/BM) | |
col = col+BM | |
# MR | |
colorwheel[col:col+MR, 2] = 255 - np.floor(255*np.arange(MR)/MR) | |
colorwheel[col:col+MR, 0] = 255 | |
return colorwheel | |
#################### Normal Version #################### | |
""" | |
From https://github.com/princeton-vl/RAFT/blob/master/core/utils/flow_viz.py | |
""" | |
def flow_uv_to_colors(u, v, convert_to_bgr=False): | |
""" | |
Applies the flow color wheel to (possibly clipped) flow components u and v. | |
According to the C++ source code of Daniel Scharstein | |
According to the Matlab source code of Deqing Sun | |
Args: | |
u (np.ndarray): Input horizontal flow of shape [H,W] | |
v (np.ndarray): Input vertical flow of shape [H,W] | |
convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False. | |
Returns: | |
np.ndarray: Flow visualization image of shape [H,W,3] | |
""" | |
flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8) | |
colorwheel = make_colorwheel() # shape [55x3] | |
ncols = colorwheel.shape[0] | |
rad = np.sqrt(np.square(u) + np.square(v)) | |
a = np.arctan2(-v, -u)/np.pi | |
fk = (a+1) / 2*(ncols-1) | |
k0 = np.floor(fk).astype(np.int32) | |
k1 = k0 + 1 | |
k1[k1 == ncols] = 0 | |
f = fk - k0 | |
for i in range(colorwheel.shape[1]): | |
tmp = colorwheel[:,i] | |
col0 = tmp[k0] / 255.0 | |
col1 = tmp[k1] / 255.0 | |
col = (1-f)*col0 + f*col1 | |
idx = (rad <= 1) | |
col[idx] = 1 - rad[idx] * (1-col[idx]) | |
col[~idx] = col[~idx] * 0.75 # out of range | |
# Note the 2-i => BGR instead of RGB | |
ch_idx = 2-i if convert_to_bgr else i | |
flow_image[:,:,ch_idx] = np.floor(255 * col) | |
return flow_image | |
def flow_to_image(flow_uv, clip_flow=None, convert_to_bgr=False): | |
""" | |
Expects a two dimensional flow image of shape. | |
Args: | |
flow_uv (np.ndarray): Flow UV image of shape [H,W,2] | |
clip_flow (float, optional): Clip maximum of flow values. Defaults to None. | |
convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False. | |
Returns: | |
np.ndarray: Flow visualization image of shape [H,W,3] | |
""" | |
assert flow_uv.ndim == 3, 'input flow must have three dimensions' | |
assert flow_uv.shape[2] == 2, 'input flow must have shape [H,W,2]' | |
if clip_flow is not None: | |
flow_uv = np.clip(flow_uv, 0, clip_flow) | |
u = flow_uv[:,:,0] | |
v = flow_uv[:,:,1] | |
rad = np.sqrt(np.square(u) + np.square(v)) | |
rad_max = np.max(rad) | |
epsilon = 1e-5 | |
u = u / (rad_max + epsilon) | |
v = v / (rad_max + epsilon) | |
return flow_uv_to_colors(u, v, convert_to_bgr) | |
#################### SCFlow Version #################### | |
def flow_uv_to_colors_scflow(u, v, convert_to_bgr=False): | |
""" | |
Applies the flow color wheel to (possibly clipped) flow components u and v. | |
According to the C++ source code of Daniel Scharstein | |
According to the Matlab source code of Deqing Sun | |
Args: | |
u (np.ndarray): Input horizontal flow of shape [H,W] | |
v (np.ndarray): Input vertical flow of shape [H,W] | |
convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False. | |
Returns: | |
np.ndarray: Flow visualization image of shape [H,W,3] | |
""" | |
flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8) | |
colorwheel = make_colorwheel() # shape [55x3] | |
ncols = colorwheel.shape[0] | |
rad = np.sqrt(np.square(u) + np.square(v)) | |
a = np.arctan2(-v, u)/np.pi | |
fk = (a+1) / 2*(ncols-1) | |
k0 = np.floor(fk).astype(np.int32) | |
k1 = k0 + 1 | |
k1[k1 == ncols] = 0 | |
f = fk - k0 | |
for i in range(colorwheel.shape[1]): | |
tmp = colorwheel[:,i] | |
col0 = tmp[k0] / 255.0 | |
col1 = tmp[k1] / 255.0 | |
col = (1-f)*col0 + f*col1 | |
idx = (rad <= 1) | |
col[idx] = 1 - rad[idx] * (1-col[idx]) | |
col[~idx] = col[~idx] * 0.75 # out of range | |
# Note the 2-i => BGR instead of RGB | |
ch_idx = 2-i if convert_to_bgr else i | |
flow_image[:,:,ch_idx] = np.floor(255 * col) | |
return flow_image | |
def flow_to_img_scflow(flow_uv, clip_flow=None): | |
""" | |
Expects a two dimensional flow image of shape. | |
Args: | |
flow_uv (np.ndarray): Flow UV image of shape [H,W,2] | |
clip_flow (float, optional): Clip maximum of flow values. Defaults to None. | |
Returns: | |
np.ndarray: Flow visualization image of shape [H,W,3] | |
""" | |
convert_to_bgr = False | |
assert flow_uv.ndim == 3, 'input flow must have three dimensions' | |
assert flow_uv.shape[2] == 2, 'input flow must have shape [H,W,2]' | |
if clip_flow is not None: | |
flow_uv = np.clip(flow_uv, 0, clip_flow) | |
u = flow_uv[:,:,0] | |
v = flow_uv[:,:,1] | |
rad = np.sqrt(np.square(u) + np.square(v)) | |
rad_max = np.max(rad) | |
epsilon = 1e-5 | |
u = u / (rad_max + epsilon) | |
v = v / (rad_max + epsilon) | |
return flow_uv_to_colors_scflow(u, v, convert_to_bgr) | |
#################### EVFlow Version #################### | |
""" | |
From https://github.com/chan8972/Spike-FlowNet/blob/master/vis_utils.py | |
""" | |
""" | |
Generates an RGB image where each point corresponds to flow in that direction from the center, | |
as visualized by flow_viz_tf. | |
Output: color_wheel_rgb: [1, width, height, 3] | |
""" | |
def draw_color_wheel_np(width, height): | |
color_wheel_x = np.linspace(-width / 2.,width / 2.,width) | |
color_wheel_y = np.linspace(-height / 2.,height / 2.,height) | |
color_wheel_X, color_wheel_Y = np.meshgrid(color_wheel_x, color_wheel_y) | |
color_wheel_rgb = flow_viz_np(color_wheel_X, color_wheel_Y) | |
return color_wheel_rgb | |
""" | |
Visualizes optical flow in HSV space using TensorFlow, with orientation as H, magnitude as V. | |
Returned as RGB. | |
Input: flow: [batch_size, width, height, 2] | |
Output: flow_rgb: [batch_size, width, height, 3] | |
""" | |
def flow_viz_np(flow_x, flow_y): | |
import cv2 | |
flows = np.stack((flow_x, flow_y), axis=2) | |
mag = np.linalg.norm(flows, axis=2) | |
ang = np.arctan2(flow_y, flow_x) | |
ang += np.pi | |
ang *= 180. / np.pi / 2. | |
ang = ang.astype(np.uint8) | |
hsv = np.zeros([flow_x.shape[0], flow_x.shape[1], 3], dtype=np.uint8) | |
hsv[:, :, 0] = ang | |
hsv[:, :, 1] = 255 | |
hsv[:, :, 2] = cv2.normalize(mag, None, 0, 255, cv2.NORM_MINMAX) | |
flow_rgb = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) | |
return flow_rgb | |
#################### Visualization tools when training SCFlow #################### | |
def outflow_img(flow_list, vis_path, name_prefix='flow', max_batch=4): | |
flow = flow_list[0] | |
batch_size, c, h, w = flow.shape | |
for batch in range(batch_size): | |
if batch > max_batch: | |
break | |
flow_current = flow[batch,:,:,:].permute(1,2,0).detach().cpu().numpy() | |
flow_img = flow_visualization(flow_current, mode='scflow', use_cv2=True) | |
cv2.imwrite(vis_path + '/{:s}_batch_id={:02d}.png'.format(name_prefix, batch), flow_img) | |
return |