Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from PIL import Image
|
5 |
+
import torchvision.transforms as transforms
|
6 |
+
from functools import partial
|
7 |
+
from dinov2 import DinoVisionTransformer
|
8 |
+
|
9 |
+
# 定义模型(使用 vit_small 作为示例)
|
10 |
+
def create_model():
|
11 |
+
model = DinoVisionTransformer(
|
12 |
+
img_size=224,
|
13 |
+
patch_size=16,
|
14 |
+
in_chans=3,
|
15 |
+
embed_dim=384,
|
16 |
+
depth=12,
|
17 |
+
num_heads=6,
|
18 |
+
mlp_ratio=4,
|
19 |
+
block_fn=partial(Block, attn_class=MemEffAttention),
|
20 |
+
num_register_tokens=4, # 设置 4 个 register tokens 用于测试
|
21 |
+
)
|
22 |
+
model.eval()
|
23 |
+
return model
|
24 |
+
|
25 |
+
# 图像预处理
|
26 |
+
def preprocess_image(image):
|
27 |
+
transform = transforms.Compose([
|
28 |
+
transforms.Resize((224, 224)),
|
29 |
+
transforms.ToTensor(),
|
30 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
31 |
+
])
|
32 |
+
img_tensor = transform(image).unsqueeze(0) # 添加 batch 维度
|
33 |
+
return img_tensor
|
34 |
+
|
35 |
+
# 修改 forward_features 以输出中间形状
|
36 |
+
def forward_with_shapes(model, x, masks=None):
|
37 |
+
shapes = []
|
38 |
+
|
39 |
+
# 1. Patch Embedding
|
40 |
+
x = model.patch_embed(x)
|
41 |
+
shapes.append(f"After patch_embed: {x.shape}")
|
42 |
+
|
43 |
+
# 2. Prepare tokens with masks
|
44 |
+
B, nc, w, h = x.shape[0], 3, 224, 224 # 原始图像尺寸
|
45 |
+
if masks is not None:
|
46 |
+
x = torch.where(masks.unsqueeze(-1), model.mask_token.to(x.dtype).unsqueeze(0), x)
|
47 |
+
x = torch.cat((model.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
|
48 |
+
shapes.append(f"After adding cls_token: {x.shape}")
|
49 |
+
|
50 |
+
# 3. Position Encoding
|
51 |
+
x = x + model.interpolate_pos_encoding(x, w, h)
|
52 |
+
shapes.append(f"After adding pos_embed: {x.shape}")
|
53 |
+
|
54 |
+
# 4. Register Tokens
|
55 |
+
if model.num_register_tokens > 0:
|
56 |
+
x = torch.cat(
|
57 |
+
(
|
58 |
+
x[:, :1], # cls_token
|
59 |
+
model.register_tokens.expand(x.shape[0], -1, -1), # register tokens
|
60 |
+
x[:, 1:], # patch tokens
|
61 |
+
),
|
62 |
+
dim=1,
|
63 |
+
)
|
64 |
+
shapes.append(f"After adding register_tokens: {x.shape}")
|
65 |
+
|
66 |
+
# 5. Transformer Blocks
|
67 |
+
for i, blk in enumerate(model.blocks):
|
68 |
+
x = blk(x)
|
69 |
+
shapes.append(f"After block {i+1}: {x.shape}")
|
70 |
+
|
71 |
+
# 6. Normalization
|
72 |
+
x_norm = model.norm(x)
|
73 |
+
shapes.append(f"After norm: {x_norm.shape}")
|
74 |
+
|
75 |
+
# 7. Extract outputs
|
76 |
+
output = {
|
77 |
+
"x_norm_clstoken": x_norm[:, 0],
|
78 |
+
"x_norm_regtokens": x_norm[:, 1 : model.num_register_tokens + 1],
|
79 |
+
"x_norm_patchtokens": x_norm[:, model.num_register_tokens + 1 :],
|
80 |
+
"x_prenorm": x,
|
81 |
+
"masks": masks,
|
82 |
+
}
|
83 |
+
shapes.append(f"x_norm_clstoken: {output['x_norm_clstoken'].shape}")
|
84 |
+
shapes.append(f"x_norm_regtokens: {output['x_norm_regtokens'].shape}")
|
85 |
+
shapes.append(f"x_norm_patchtokens: {output['x_norm_patchtokens'].shape}")
|
86 |
+
shapes.append(f"x_prenorm: {output['x_prenorm'].shape}")
|
87 |
+
|
88 |
+
return output, shapes
|
89 |
+
|
90 |
+
# 主处理函数
|
91 |
+
def process_image(image):
|
92 |
+
model = create_model()
|
93 |
+
img_tensor = preprocess_image(image)
|
94 |
+
|
95 |
+
# 前向传播并获取形状
|
96 |
+
output, shapes = forward_with_shapes(model, img_tensor)
|
97 |
+
|
98 |
+
# 将形状列表转换为字符串
|
99 |
+
shapes_text = "\n".join(shapes)
|
100 |
+
return shapes_text
|
101 |
+
|
102 |
+
# Gradio 界面
|
103 |
+
demo = gr.Interface(
|
104 |
+
fn=process_image,
|
105 |
+
inputs=gr.Image(type="pil", label="Upload an Image"),
|
106 |
+
outputs=gr.Textbox(label="Feature Map Shapes"),
|
107 |
+
title="DinoVisionTransformer Feature Map Shapes",
|
108 |
+
description="Upload an image to see the shapes of feature maps at each step of DinoVisionTransformer (vit_small, 4 register tokens).",
|
109 |
+
)
|
110 |
+
|
111 |
+
demo.launch()
|