Spaces:
Sleeping
Sleeping
Update submodules.py
Browse files- submodules.py +416 -770
submodules.py
CHANGED
@@ -1,833 +1,479 @@
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
-
import torch.nn.functional as
|
4 |
-
|
5 |
-
import
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
self.resblock1 = ResidualBlock(dim, dim, 1, norm='BN')
|
20 |
-
self.resblock2 = ResidualBlock(dim, dim, 1, norm='BN')
|
21 |
-
self.resblock3 = ResidualBlock(dim, dim, 1, norm='BN')
|
22 |
-
self.resblock4 = ResidualBlock(dim, dim, 1, norm='BN')
|
23 |
-
def forward(self, x):
|
24 |
-
out = self.resblock1(x)
|
25 |
-
out = self.resblock2(out)
|
26 |
-
out = self.resblock3(out)
|
27 |
-
out = self.resblock4(out)
|
28 |
-
return out
|
29 |
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
class feature_generator(nn.Module):
|
32 |
-
def __init__(self, dim, kernel_size=3):
|
33 |
-
super(feature_generator, self).__init__()
|
34 |
-
self.dim = dim
|
35 |
-
self.kernel_size = kernel_size
|
36 |
-
self.conv1 = nn.Conv2d(in_channels=dim,
|
37 |
-
out_channels=dim,
|
38 |
-
kernel_size=kernel_size,
|
39 |
-
stride=1,
|
40 |
-
padding=(kernel_size-1)//2)
|
41 |
-
self.conv2 = nn.Conv2d(in_channels=dim,
|
42 |
-
out_channels=dim,
|
43 |
-
kernel_size=kernel_size,
|
44 |
-
stride=1,
|
45 |
-
padding=(kernel_size-1)//2)
|
46 |
-
self.conv3 = nn.Conv2d(in_channels=dim,
|
47 |
-
out_channels=dim,
|
48 |
-
kernel_size=kernel_size,
|
49 |
-
stride=1,
|
50 |
-
padding=(kernel_size-1)//2)
|
51 |
-
self.conv4 = nn.Conv2d(in_channels=dim,
|
52 |
-
out_channels=dim,
|
53 |
-
kernel_size=kernel_size,
|
54 |
-
stride=1,
|
55 |
-
padding=(kernel_size-1)//2)
|
56 |
-
self.bn1 = nn.BatchNorm2d(dim)
|
57 |
-
self.bn2 = nn.BatchNorm2d(dim)
|
58 |
-
self.bn3 = nn.BatchNorm2d(dim)
|
59 |
-
self.bn4 = nn.BatchNorm2d(dim)
|
60 |
def forward(self, x):
|
61 |
-
out =
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
65 |
return out
|
66 |
|
67 |
|
68 |
-
class
|
69 |
-
def __init__(self,
|
70 |
-
super().__init__()
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
-
self.
|
74 |
-
|
75 |
|
76 |
-
self.
|
|
|
77 |
|
78 |
-
|
79 |
|
80 |
-
self.global_head = nn.Conv2d(in_chans, embed_dim // 2, kernel_size=3, stride=1, padding=1)
|
81 |
|
82 |
-
|
83 |
-
|
|
|
84 |
|
85 |
-
|
86 |
-
self.
|
87 |
|
88 |
-
if
|
89 |
-
self.
|
90 |
else:
|
91 |
-
self.
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
96 |
|
97 |
def forward(self, x):
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
# x = F.pad(x, (0, 0, 0, 0, 0, self.patch_size[0] - D % self.patch_size[0]))
|
107 |
-
xs = x.chunk(self.num_blocks, 1)
|
108 |
-
outs = []
|
109 |
-
outi_global = self.global_head(x)
|
110 |
-
outi_global = self.global_residual_encoding(outi_global)
|
111 |
-
outi_global = self.global_proj(outi_global)
|
112 |
-
|
113 |
-
for i in range(self.num_blocks):
|
114 |
-
outi_local = self.head(xs[i])
|
115 |
-
outi_local = self.residual_encoding(outi_local)
|
116 |
-
outi_local = self.proj(outi_local)
|
117 |
-
outi = torch.cat([outi_local, outi_global], dim=1)
|
118 |
-
outi = outi.unsqueeze(2)
|
119 |
-
outs.append(outi)
|
120 |
-
|
121 |
-
out = torch.cat(outs, dim=2) # B, 96, 4, H, W
|
122 |
-
|
123 |
-
# x = self.proj(x) # B C D Wh Ww
|
124 |
-
if self.norm is not None:
|
125 |
-
D, Wh, Ww = out.size(2), out.size(3), out.size(4)
|
126 |
-
out = out.flatten(2).transpose(1, 2)
|
127 |
-
out = self.norm(out)
|
128 |
-
out = out.transpose(1, 2).view(-1, self.embed_dim, D, Wh, Ww)
|
129 |
|
130 |
return out
|
131 |
|
132 |
|
133 |
-
class
|
134 |
-
def __init__(self,
|
135 |
-
|
136 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
-
|
139 |
-
|
|
|
|
|
|
|
140 |
|
141 |
-
self.num_blocks = self.in_chans // patch_size[0]
|
142 |
|
143 |
-
|
|
|
|
|
|
|
144 |
|
145 |
-
self.
|
|
|
|
|
146 |
|
147 |
-
|
148 |
-
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
else:
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
|
153 |
def forward(self, x):
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
outi = self.residual_encoding(outi)
|
169 |
-
outi = self.proj(outi)
|
170 |
-
outi = outi.unsqueeze(2)
|
171 |
-
outs.append(outi)
|
172 |
-
|
173 |
-
out = torch.cat(outs, dim=2) # B, 96, 4, H, W
|
174 |
-
|
175 |
-
# x = self.proj(x) # B C D Wh Ww
|
176 |
-
if self.norm is not None:
|
177 |
-
D, Wh, Ww = out.size(2), out.size(3), out.size(4)
|
178 |
-
out = out.flatten(2).transpose(1, 2)
|
179 |
-
out = self.norm(out)
|
180 |
-
out = out.transpose(1, 2).view(-1, self.embed_dim, D, Wh, Ww)
|
181 |
-
|
182 |
return out
|
183 |
|
184 |
|
185 |
-
class
|
186 |
-
"""
|
|
|
187 |
|
188 |
-
def __init__(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
super().__init__()
|
190 |
-
out_features = out_features or in_features
|
191 |
-
hidden_features = hidden_features or in_features
|
192 |
-
self.fc1 = nn.Linear(in_features, hidden_features)
|
193 |
-
self.act = act_layer()
|
194 |
-
self.fc2 = nn.Linear(hidden_features, out_features)
|
195 |
-
self.drop = nn.Dropout(drop)
|
196 |
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
x = self.drop(x)
|
201 |
-
x = self.fc2(x)
|
202 |
-
x = self.drop(x)
|
203 |
-
return x
|
204 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
Returns:
|
212 |
-
windows: (B*num_windows, window_size*window_size, C)
|
213 |
-
"""
|
214 |
-
B, D, H, W, C = x.shape
|
215 |
-
x = x.view(B, D // window_size[0], window_size[0], H // window_size[1], window_size[1], W // window_size[2], window_size[2], C)
|
216 |
-
windows = x.permute(0, 1, 3, 5, 2, 4, 6, 7).contiguous().view(-1, reduce(mul, window_size), C)
|
217 |
-
return windows
|
218 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
|
220 |
-
def
|
221 |
-
|
222 |
-
|
223 |
-
windows: (B*num_windows, window_size, window_size, C)
|
224 |
-
window_size (tuple[int]): Window size
|
225 |
-
H (int): Height of image
|
226 |
-
W (int): Width of image
|
227 |
-
Returns:
|
228 |
-
x: (B, D, H, W, C)
|
229 |
-
"""
|
230 |
-
x = windows.view(B, D // window_size[0], H // window_size[1], W // window_size[2], window_size[0], window_size[1], window_size[2], -1)
|
231 |
-
x = x.permute(0, 1, 4, 2, 5, 3, 6, 7).contiguous().view(B, D, H, W, -1)
|
232 |
-
return x
|
233 |
-
|
234 |
-
|
235 |
-
def get_window_size(x_size, window_size, shift_size=None):
|
236 |
-
use_window_size = list(window_size)
|
237 |
-
if shift_size is not None:
|
238 |
-
use_shift_size = list(shift_size)
|
239 |
-
for i in range(len(x_size)):
|
240 |
-
if x_size[i] <= window_size[i]:
|
241 |
-
use_window_size[i] = x_size[i]
|
242 |
-
if shift_size is not None:
|
243 |
-
use_shift_size[i] = 0
|
244 |
-
|
245 |
-
if shift_size is None:
|
246 |
-
return tuple(use_window_size)
|
247 |
-
else:
|
248 |
-
return tuple(use_window_size), tuple(use_shift_size)
|
249 |
-
|
250 |
-
|
251 |
-
class WindowAttention3D(nn.Module):
|
252 |
-
""" Window based multi-head self attention (W-MSA) module with relative position bias.
|
253 |
-
It supports both of shifted and non-shifted window.
|
254 |
-
Args:
|
255 |
-
dim (int): Number of input channels.
|
256 |
-
window_size (tuple[int]): The temporal length, height and width of the window.
|
257 |
-
num_heads (int): Number of attention heads.
|
258 |
-
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
259 |
-
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
|
260 |
-
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
261 |
-
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
262 |
-
"""
|
263 |
|
264 |
-
def
|
|
|
|
|
265 |
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
self.num_heads = num_heads
|
270 |
-
head_dim = dim // num_heads
|
271 |
-
self.scale = qk_scale or head_dim ** -0.5
|
272 |
-
|
273 |
-
# define a parameter table of relative position bias
|
274 |
-
self.relative_position_bias_table = nn.Parameter(
|
275 |
-
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1) * (2 * window_size[2] - 1), num_heads)) # 2*Wd-1 * 2*Wh-1 * 2*Ww-1, nH
|
276 |
-
|
277 |
-
# get pair-wise relative position index for each token inside the window
|
278 |
-
coords_d = torch.arange(self.window_size[0])
|
279 |
-
coords_h = torch.arange(self.window_size[1])
|
280 |
-
coords_w = torch.arange(self.window_size[2])
|
281 |
-
coords = torch.stack(torch.meshgrid(coords_d, coords_h, coords_w)) # 3, Wd, Wh, Ww
|
282 |
-
coords_flatten = torch.flatten(coords, 1) # 3, Wd*Wh*Ww
|
283 |
-
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 3, Wd*Wh*Ww, Wd*Wh*Ww
|
284 |
-
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wd*Wh*Ww, Wd*Wh*Ww, 3
|
285 |
-
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
286 |
-
relative_coords[:, :, 1] += self.window_size[1] - 1
|
287 |
-
relative_coords[:, :, 2] += self.window_size[2] - 1
|
288 |
-
|
289 |
-
relative_coords[:, :, 0] *= (2 * self.window_size[1] - 1) * (2 * self.window_size[2] - 1)
|
290 |
-
relative_coords[:, :, 1] *= (2 * self.window_size[2] - 1)
|
291 |
-
relative_position_index = relative_coords.sum(-1) # Wd*Wh*Ww, Wd*Wh*Ww
|
292 |
-
self.register_buffer("relative_position_index", relative_position_index)
|
293 |
-
|
294 |
-
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
295 |
-
self.attn_drop = nn.Dropout(attn_drop)
|
296 |
-
self.proj = nn.Linear(dim, dim)
|
297 |
-
self.proj_drop = nn.Dropout(proj_drop)
|
298 |
-
|
299 |
-
trunc_normal_(self.relative_position_bias_table, std=.02)
|
300 |
-
self.softmax = nn.Softmax(dim=-1)
|
301 |
-
|
302 |
-
def forward(self, x, mask=None):
|
303 |
-
""" Forward function.
|
304 |
-
Args:
|
305 |
-
x: input features with shape of (num_windows*B, N, C)
|
306 |
-
mask: (0/-inf) mask with shape of (num_windows, N, N) or None
|
307 |
-
"""
|
308 |
-
B_, N, C = x.shape
|
309 |
-
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
310 |
-
q, k, v = qkv[0], qkv[1], qkv[2] # B_, nH, N, C
|
311 |
-
|
312 |
-
q = q * self.scale
|
313 |
-
attn = q @ k.transpose(-2, -1)
|
314 |
-
|
315 |
-
relative_position_bias = self.relative_position_bias_table[self.relative_position_index[:N, :N].reshape(-1)].reshape(
|
316 |
-
N, N, -1) # Wd*Wh*Ww,Wd*Wh*Ww,nH
|
317 |
-
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wd*Wh*Ww, Wd*Wh*Ww
|
318 |
-
attn = attn + relative_position_bias.unsqueeze(0) # B_, nH, N, N
|
319 |
-
|
320 |
-
if mask is not None:
|
321 |
-
nW = mask.shape[0]
|
322 |
-
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
323 |
-
attn = attn.view(-1, self.num_heads, N, N)
|
324 |
-
attn = self.softmax(attn)
|
325 |
-
else:
|
326 |
-
attn = self.softmax(attn)
|
327 |
-
|
328 |
-
attn = self.attn_drop(attn)
|
329 |
-
# print('attn: ', attn.shape, ', v: ', v.shape, ', x: ', x.shape)
|
330 |
-
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
331 |
-
x = self.proj(x)
|
332 |
-
x = self.proj_drop(x)
|
333 |
-
return x
|
334 |
-
|
335 |
-
|
336 |
-
class SwinTransformerBlock3D(nn.Module):
|
337 |
-
""" Swin Transformer Block.
|
338 |
-
Args:
|
339 |
-
dim (int): Number of input channels.
|
340 |
-
num_heads (int): Number of attention heads.
|
341 |
-
window_size (tuple[int]): Window size.
|
342 |
-
shift_size (tuple[int]): Shift size for SW-MSA.
|
343 |
-
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
344 |
-
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
345 |
-
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
346 |
-
drop (float, optional): Dropout rate. Default: 0.0
|
347 |
-
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
348 |
-
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
349 |
-
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
350 |
-
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
351 |
-
"""
|
352 |
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
self.dim = dim
|
358 |
-
self.num_heads = num_heads
|
359 |
-
self.window_size = window_size
|
360 |
-
self.shift_size = shift_size
|
361 |
-
self.mlp_ratio = mlp_ratio
|
362 |
-
self.use_checkpoint=use_checkpoint
|
363 |
-
|
364 |
-
assert 0 <= self.shift_size[0] < self.window_size[0], "shift_size must in 0-window_size"
|
365 |
-
assert 0 <= self.shift_size[1] < self.window_size[1], "shift_size must in 0-window_size"
|
366 |
-
assert 0 <= self.shift_size[2] < self.window_size[2], "shift_size must in 0-window_size"
|
367 |
-
|
368 |
-
self.norm1 = norm_layer(dim)
|
369 |
-
self.attn = WindowAttention3D(
|
370 |
-
dim, window_size=self.window_size, num_heads=num_heads,
|
371 |
-
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
372 |
-
|
373 |
-
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
374 |
-
self.norm2 = norm_layer(dim)
|
375 |
-
mlp_hidden_dim = int(dim * mlp_ratio)
|
376 |
-
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
377 |
-
|
378 |
-
def forward_part1(self, x, mask_matrix):
|
379 |
-
B, D, H, W, C = x.shape
|
380 |
-
window_size, shift_size = get_window_size((D, H, W), self.window_size, self.shift_size)
|
381 |
-
# print('window_size: ', window_size, ', shift_size: ', shift_size)
|
382 |
-
x = self.norm1(x)
|
383 |
-
# pad feature maps to multiples of window size
|
384 |
-
pad_l = pad_t = pad_d0 = 0
|
385 |
-
pad_d1 = (window_size[0] - D % window_size[0]) % window_size[0]
|
386 |
-
pad_b = (window_size[1] - H % window_size[1]) % window_size[1]
|
387 |
-
pad_r = (window_size[2] - W % window_size[2]) % window_size[2]
|
388 |
-
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b, pad_d0, pad_d1))
|
389 |
-
_, Dp, Hp, Wp, _ = x.shape
|
390 |
-
# cyclic shift
|
391 |
-
if any(i > 0 for i in shift_size):
|
392 |
-
shifted_x = torch.roll(x, shifts=(-shift_size[0], -shift_size[1], -shift_size[2]), dims=(1, 2, 3))
|
393 |
-
attn_mask = mask_matrix
|
394 |
-
else:
|
395 |
-
shifted_x = x
|
396 |
-
attn_mask = None
|
397 |
-
# partition windows
|
398 |
-
x_windows = window_partition(shifted_x, window_size) # B*nW, Wd*Wh*Ww, C
|
399 |
-
# print('shifted_x: ', shifted_x.shape, 'x_windows: ', x_windows.shape)
|
400 |
-
# W-MSA/SW-MSA
|
401 |
-
attn_windows = self.attn(x_windows, mask=attn_mask) # B*nW, Wd*Wh*Ww, C
|
402 |
-
# merge windows
|
403 |
-
attn_windows = attn_windows.view(-1, *(window_size+(C,)))
|
404 |
-
# print('attn_windows: ', attn_windows.shape)
|
405 |
-
shifted_x = window_reverse(attn_windows, window_size, B, Dp, Hp, Wp) # B D' H' W' C
|
406 |
-
# reverse cyclic shift
|
407 |
-
if any(i > 0 for i in shift_size):
|
408 |
-
x = torch.roll(shifted_x, shifts=(shift_size[0], shift_size[1], shift_size[2]), dims=(1, 2, 3))
|
409 |
-
else:
|
410 |
-
x = shifted_x
|
411 |
|
412 |
-
|
413 |
-
|
414 |
-
|
|
|
|
|
415 |
|
416 |
-
|
417 |
-
return self.drop_path(self.mlp(self.norm2(x)))
|
418 |
|
419 |
-
def forward(self, x, mask_matrix):
|
420 |
-
""" Forward function.
|
421 |
-
Args:
|
422 |
-
x: Input feature, tensor size (B, D, H, W, C).
|
423 |
-
mask_matrix: Attention mask for cyclic shift.
|
424 |
-
"""
|
425 |
|
426 |
-
|
427 |
-
|
428 |
-
x = checkpoint.checkpoint(self.forward_part1, x, mask_matrix)
|
429 |
-
else:
|
430 |
-
x = self.forward_part1(x, mask_matrix)
|
431 |
-
x = shortcut + self.drop_path(x)
|
432 |
|
433 |
-
|
434 |
-
|
435 |
-
else:
|
436 |
-
x = x + self.forward_part2(x)
|
437 |
|
438 |
-
|
|
|
|
|
439 |
|
|
|
|
|
440 |
|
441 |
-
|
442 |
-
""" Patch Merging Layer
|
443 |
-
Args:
|
444 |
-
dim (int): Number of input channels.
|
445 |
-
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
446 |
-
"""
|
447 |
-
def __init__(self, dim, norm_layer=nn.LayerNorm):
|
448 |
-
super().__init__()
|
449 |
-
self.dim = dim
|
450 |
-
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
451 |
-
self.norm = norm_layer(4 * dim)
|
452 |
|
453 |
-
def forward(self,
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
"""
|
458 |
-
B, D, H, W, C = x.shape
|
459 |
-
|
460 |
-
# padding
|
461 |
-
pad_input = (H % 2 == 1) or (W % 2 == 1)
|
462 |
-
if pad_input:
|
463 |
-
x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
|
464 |
-
|
465 |
-
x0 = x[:, :, 0::2, 0::2, :] # B D H/2 W/2 C
|
466 |
-
x1 = x[:, :, 1::2, 0::2, :] # B D H/2 W/2 C
|
467 |
-
x2 = x[:, :, 0::2, 1::2, :] # B D H/2 W/2 C
|
468 |
-
x3 = x[:, :, 1::2, 1::2, :] # B D H/2 W/2 C
|
469 |
-
x = torch.cat([x0, x1, x2, x3], -1) # B D H/2 W/2 4*C
|
470 |
-
|
471 |
-
x = self.norm(x)
|
472 |
-
x = self.reduction(x)
|
473 |
-
|
474 |
-
return x
|
475 |
-
|
476 |
-
|
477 |
-
# cache each stage results
|
478 |
-
@lru_cache()
|
479 |
-
def compute_mask(D, H, W, window_size, shift_size, device):
|
480 |
-
img_mask = torch.zeros((1, D, H, W, 1), device=device) # 1 Dp Hp Wp 1
|
481 |
-
cnt = 0
|
482 |
-
for d in slice(-window_size[0]), slice(-window_size[0], -shift_size[0]), slice(-shift_size[0],None):
|
483 |
-
for h in slice(-window_size[1]), slice(-window_size[1], -shift_size[1]), slice(-shift_size[1],None):
|
484 |
-
for w in slice(-window_size[2]), slice(-window_size[2], -shift_size[2]), slice(-shift_size[2],None):
|
485 |
-
img_mask[:, d, h, w, :] = cnt
|
486 |
-
cnt += 1
|
487 |
-
mask_windows = window_partition(img_mask, window_size) # nW, ws[0]*ws[1]*ws[2], 1
|
488 |
-
mask_windows = mask_windows.squeeze(-1) # nW, ws[0]*ws[1]*ws[2]
|
489 |
-
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
490 |
-
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
491 |
-
return attn_mask
|
492 |
-
|
493 |
-
|
494 |
-
class BasicLayer(nn.Module):
|
495 |
-
""" A basic Swin Transformer layer for one stage.
|
496 |
-
Args:
|
497 |
-
dim (int): Number of feature channels
|
498 |
-
depth (int): Depths of this stage.
|
499 |
-
num_heads (int): Number of attention head.
|
500 |
-
window_size (tuple[int]): Local window size. Default: (1,7,7).
|
501 |
-
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
|
502 |
-
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
503 |
-
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
504 |
-
drop (float, optional): Dropout rate. Default: 0.0
|
505 |
-
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
506 |
-
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
507 |
-
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
508 |
-
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
509 |
-
"""
|
510 |
|
511 |
-
|
512 |
-
|
513 |
-
depth,
|
514 |
-
num_heads,
|
515 |
-
window_size=(1,7,7),
|
516 |
-
mlp_ratio=4.,
|
517 |
-
qkv_bias=False,
|
518 |
-
qk_scale=None,
|
519 |
-
drop=0.,
|
520 |
-
attn_drop=0.,
|
521 |
-
drop_path=0.,
|
522 |
-
norm_layer=nn.LayerNorm,
|
523 |
-
downsample=None,
|
524 |
-
use_checkpoint=False):
|
525 |
-
super().__init__()
|
526 |
-
self.window_size = window_size
|
527 |
-
self.shift_size = tuple(i // 2 for i in window_size)
|
528 |
-
self.depth = depth
|
529 |
-
self.use_checkpoint = use_checkpoint
|
530 |
-
|
531 |
-
# build blocks
|
532 |
-
self.blocks = nn.ModuleList([
|
533 |
-
SwinTransformerBlock3D(
|
534 |
-
dim=dim,
|
535 |
-
num_heads=num_heads,
|
536 |
-
window_size=window_size,
|
537 |
-
shift_size=(0,0,0) if (i % 2 == 0) else self.shift_size,
|
538 |
-
mlp_ratio=mlp_ratio,
|
539 |
-
qkv_bias=qkv_bias,
|
540 |
-
qk_scale=qk_scale,
|
541 |
-
drop=drop,
|
542 |
-
attn_drop=attn_drop,
|
543 |
-
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
544 |
-
norm_layer=norm_layer,
|
545 |
-
use_checkpoint=use_checkpoint,
|
546 |
-
)
|
547 |
-
for i in range(depth)])
|
548 |
-
|
549 |
-
self.downsample = downsample
|
550 |
-
if self.downsample is not None:
|
551 |
-
self.downsample = downsample(dim=dim, norm_layer=norm_layer)
|
552 |
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
attn_mask = compute_mask(Dp, Hp, Wp, window_size, shift_size, x.device)
|
566 |
-
for blk in self.blocks:
|
567 |
-
x = blk(x, attn_mask)
|
568 |
-
# print(x.shape)
|
569 |
-
x = x.view(B, D, H, W, -1)
|
570 |
-
|
571 |
-
if self.downsample is not None:
|
572 |
-
x_out = self.downsample(x)
|
573 |
-
else:
|
574 |
-
x_out = x
|
575 |
-
x_out = rearrange(x_out, 'b d h w c -> b c d h w')
|
576 |
-
return x_out, x
|
577 |
-
|
578 |
-
|
579 |
-
class PatchEmbed3D(nn.Module):
|
580 |
-
""" Video to Patch Embedding.
|
581 |
-
Args:
|
582 |
-
patch_size (int): Patch token size. Default: (2,4,4).
|
583 |
-
in_chans (int): Number of input video channels. Default: 3.
|
584 |
-
embed_dim (int): Number of linear projection output channels. Default: 96.
|
585 |
-
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
586 |
-
"""
|
587 |
-
def __init__(self, patch_size=(2,4,4), in_chans=3, embed_dim=96, norm_layer=None):
|
588 |
-
super().__init__()
|
589 |
-
self.patch_size = patch_size
|
590 |
|
591 |
-
|
592 |
-
|
|
|
593 |
|
594 |
-
#
|
595 |
-
|
596 |
-
|
597 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
598 |
else:
|
599 |
-
|
600 |
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
return x
|
621 |
-
|
622 |
-
|
623 |
-
class SwinTransformer3D(nn.Module):
|
624 |
-
""" Swin Transformer backbone.
|
625 |
-
Args:
|
626 |
-
patch_size (int | tuple(int)): Patch size. Default: (4,4,4).
|
627 |
-
in_chans (int): Number of input image channels. Default: 3.
|
628 |
-
embed_dim (int): Number of linear projection output channels. Default: 96.
|
629 |
-
depths (tuple[int]): Depths of each Swin Transformer stage.
|
630 |
-
num_heads (tuple[int]): Number of attention head of each stage.
|
631 |
-
window_size (int): Window size. Default: 7.
|
632 |
-
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
|
633 |
-
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: Truee
|
634 |
-
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
|
635 |
-
drop_rate (float): Dropout rate.
|
636 |
-
attn_drop_rate (float): Attention dropout rate. Default: 0.
|
637 |
-
drop_path_rate (float): Stochastic depth rate. Default: 0.2.
|
638 |
-
norm_layer: Normalization layer. Default: nn.LayerNorm.
|
639 |
-
patch_norm (bool): If True, add normalization after patch embedding. Default: False.
|
640 |
-
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
|
641 |
-
-1 means not freezing any parameters.
|
642 |
"""
|
643 |
|
644 |
-
def __init__(self,
|
645 |
-
pretrained=None,
|
646 |
-
pretrained2d=True,
|
647 |
-
patch_size=(4,4,4),
|
648 |
-
in_chans=3,
|
649 |
-
embed_dim=96,
|
650 |
-
depths=[2, 2, 6, 2],
|
651 |
-
num_heads=[3, 6, 12, 24],
|
652 |
-
window_size=(2,7,7),
|
653 |
-
mlp_ratio=4.,
|
654 |
-
qkv_bias=True,
|
655 |
-
qk_scale=None,
|
656 |
-
drop_rate=0.,
|
657 |
-
attn_drop_rate=0.,
|
658 |
-
drop_path_rate=0.2,
|
659 |
-
norm_layer=nn.LayerNorm,
|
660 |
-
patch_norm=False,
|
661 |
-
out_indices=(0,1,2,3),
|
662 |
-
frozen_stages=-1,
|
663 |
-
use_checkpoint=False,
|
664 |
-
new_version=0):
|
665 |
super().__init__()
|
666 |
-
|
667 |
-
self.
|
668 |
-
self.
|
669 |
-
self.
|
670 |
-
self.
|
671 |
-
self.
|
672 |
-
|
673 |
-
self.
|
674 |
-
self.
|
675 |
-
self.
|
676 |
-
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
|
684 |
-
|
685 |
-
|
686 |
-
|
687 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
688 |
else:
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
self.
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
|
699 |
-
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
dim=int(embed_dim * 2**i_layer),
|
704 |
-
depth=depths[i_layer],
|
705 |
-
num_heads=num_heads[i_layer],
|
706 |
-
window_size=window_size,
|
707 |
-
mlp_ratio=mlp_ratio,
|
708 |
-
qkv_bias=qkv_bias,
|
709 |
-
qk_scale=qk_scale,
|
710 |
-
drop=drop_rate,
|
711 |
-
attn_drop=attn_drop_rate,
|
712 |
-
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
|
713 |
-
norm_layer=norm_layer,
|
714 |
-
downsample=PatchMerging if i_layer<self.num_layers-1 else None,
|
715 |
-
use_checkpoint=use_checkpoint)
|
716 |
-
self.layers.append(layer)
|
717 |
-
|
718 |
-
# self.num_features = int(embed_dim * 2**(self.num_layers-1))
|
719 |
-
num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)]
|
720 |
-
self.num_features = num_features
|
721 |
-
|
722 |
-
# add a norm layer for each output
|
723 |
-
# self.norm = norm_layer(self.num_features)
|
724 |
-
|
725 |
-
# add a norm layer for each output
|
726 |
-
for i_layer in self.out_indices:
|
727 |
-
layer = norm_layer(self.num_features[i_layer])
|
728 |
-
layer_name = f'norm{i_layer}'
|
729 |
-
self.add_module(layer_name, layer)
|
730 |
-
|
731 |
-
|
732 |
-
def inflate_weights(self, logger):
|
733 |
-
"""Inflate the swin2d parameters to swin3d.
|
734 |
-
The differences between swin3d and swin2d mainly lie in an extra
|
735 |
-
axis. To utilize the pretrained parameters in 2d model,
|
736 |
-
the weight of swin2d models should be inflated to fit in the shapes of
|
737 |
-
the 3d counterpart.
|
738 |
-
Args:
|
739 |
-
logger (logging.Logger): The logger used to print
|
740 |
-
debugging infomation.
|
741 |
-
"""
|
742 |
-
checkpoint = torch.load(self.pretrained, map_location='cpu')
|
743 |
-
state_dict = checkpoint['model']
|
744 |
-
|
745 |
-
# delete relative_position_index since we always re-init it
|
746 |
-
relative_position_index_keys = [k for k in state_dict.keys() if "relative_position_index" in k]
|
747 |
-
for k in relative_position_index_keys:
|
748 |
-
del state_dict[k]
|
749 |
-
|
750 |
-
# delete attn_mask since we always re-init it
|
751 |
-
attn_mask_keys = [k for k in state_dict.keys() if "attn_mask" in k]
|
752 |
-
for k in attn_mask_keys:
|
753 |
-
del state_dict[k]
|
754 |
-
|
755 |
-
state_dict['patch_embed.proj.weight'] = state_dict['patch_embed.proj.weight'].unsqueeze(2).repeat(1,1,self.patch_size[0],1,1) / self.patch_size[0]
|
756 |
-
|
757 |
-
# bicubic interpolate relative_position_bias_table if not match
|
758 |
-
relative_position_bias_table_keys = [k for k in state_dict.keys() if "relative_position_bias_table" in k]
|
759 |
-
for k in relative_position_bias_table_keys:
|
760 |
-
relative_position_bias_table_pretrained = state_dict[k]
|
761 |
-
relative_position_bias_table_current = self.state_dict()[k]
|
762 |
-
L1, nH1 = relative_position_bias_table_pretrained.size()
|
763 |
-
L2, nH2 = relative_position_bias_table_current.size()
|
764 |
-
L2 = (2*self.window_size[1]-1) * (2*self.window_size[2]-1)
|
765 |
-
wd = self.window_size[0]
|
766 |
-
if nH1 != nH2:
|
767 |
-
logger.warning(f"Error in loading {k}, passing")
|
768 |
-
else:
|
769 |
-
if L1 != L2:
|
770 |
-
S1 = int(L1 ** 0.5)
|
771 |
-
relative_position_bias_table_pretrained_resized = torch.nn.functional.interpolate(
|
772 |
-
relative_position_bias_table_pretrained.permute(1, 0).view(1, nH1, S1, S1), size=(2*self.window_size[1]-1, 2*self.window_size[2]-1),
|
773 |
-
mode='bicubic')
|
774 |
-
relative_position_bias_table_pretrained = relative_position_bias_table_pretrained_resized.view(nH2, L2).permute(1, 0)
|
775 |
-
state_dict[k] = relative_position_bias_table_pretrained.repeat(2*wd-1,1)
|
776 |
-
|
777 |
-
msg = self.load_state_dict(state_dict, strict=False)
|
778 |
-
logger.info(msg)
|
779 |
-
logger.info(f"=> loaded successfully '{self.pretrained}'")
|
780 |
-
del checkpoint
|
781 |
-
torch.cuda.empty_cache()
|
782 |
-
|
783 |
-
def init_weights(self, pretrained=None):
|
784 |
-
"""Initialize the weights in backbone.
|
785 |
-
Args:
|
786 |
-
pretrained (str, optional): Path to pre-trained weights.
|
787 |
-
Defaults to None.
|
788 |
-
"""
|
789 |
-
def _init_weights(m):
|
790 |
-
if isinstance(m, nn.Linear):
|
791 |
-
trunc_normal_(m.weight, std=.02)
|
792 |
-
if isinstance(m, nn.Linear) and m.bias is not None:
|
793 |
-
nn.init.constant_(m.bias, 0)
|
794 |
-
elif isinstance(m, nn.LayerNorm):
|
795 |
-
nn.init.constant_(m.bias, 0)
|
796 |
-
nn.init.constant_(m.weight, 1.0)
|
797 |
-
|
798 |
-
if pretrained:
|
799 |
-
self.pretrained = pretrained
|
800 |
-
if isinstance(self.pretrained, str):
|
801 |
-
self.apply(_init_weights)
|
802 |
-
logger = get_root_logger()
|
803 |
-
logger.info(f'load model from: {self.pretrained}')
|
804 |
-
|
805 |
-
if self.pretrained2d:
|
806 |
-
# Inflate 2D model into 3D model.
|
807 |
-
self.inflate_weights(logger)
|
808 |
-
else:
|
809 |
-
# Directly load 3D model.
|
810 |
-
load_checkpoint(self, self.pretrained, strict=False, logger=logger)
|
811 |
-
elif self.pretrained is None:
|
812 |
-
self.apply(_init_weights)
|
813 |
-
else:
|
814 |
-
raise TypeError('pretrained must be a str or None')
|
815 |
-
|
816 |
-
def forward(self, x):
|
817 |
-
"""Forward function."""
|
818 |
-
x = self.patch_embed(x)
|
819 |
-
# print(x.shape)
|
820 |
-
x = self.pos_drop(x)
|
821 |
-
|
822 |
-
outs = []
|
823 |
-
for i, layer in enumerate(self.layers):
|
824 |
-
x, out_x = layer(x.contiguous())
|
825 |
-
# print('---- ', out_x.shape)
|
826 |
-
if i in self.out_indices:
|
827 |
-
norm_layer = getattr(self, f'norm{i}')
|
828 |
-
out_x = norm_layer(out_x)
|
829 |
-
_, Ti, Hi, Wi, Ci = out_x.shape
|
830 |
-
out = rearrange(out_x, 'n d h w c -> n c d h w')
|
831 |
-
outs.append(out)
|
832 |
-
|
833 |
-
return tuple(outs)
|
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
+
import torch.nn.functional as f
|
4 |
+
from torch.nn import init
|
5 |
+
import math
|
6 |
+
|
7 |
+
|
8 |
+
class ConvLayer(nn.Module):
|
9 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, activation='relu', norm=None,
|
10 |
+
BN_momentum=0.1):
|
11 |
+
super(ConvLayer, self).__init__()
|
12 |
+
|
13 |
+
bias = False if norm == 'BN' else True
|
14 |
+
self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=bias)
|
15 |
+
if activation is not None:
|
16 |
+
self.activation = getattr(torch, activation)
|
17 |
+
else:
|
18 |
+
self.activation = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
self.norm = norm
|
21 |
+
if norm == 'BN':
|
22 |
+
self.norm_layer = nn.BatchNorm2d(out_channels, momentum=BN_momentum)
|
23 |
+
elif norm == 'IN':
|
24 |
+
self.norm_layer = nn.InstanceNorm2d(out_channels, track_running_stats=True)
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
def forward(self, x):
|
27 |
+
out = self.conv2d(x)
|
28 |
+
|
29 |
+
if self.norm in ['BN', 'IN']:
|
30 |
+
out = self.norm_layer(out)
|
31 |
+
|
32 |
+
if self.activation is not None:
|
33 |
+
out = self.activation(out)
|
34 |
+
|
35 |
return out
|
36 |
|
37 |
|
38 |
+
class TransposedConvLayer(nn.Module):
|
39 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, activation='relu', norm=None):
|
40 |
+
super(TransposedConvLayer, self).__init__()
|
41 |
+
|
42 |
+
bias = False if norm == 'BN' else True
|
43 |
+
self.transposed_conv2d = nn.ConvTranspose2d(
|
44 |
+
in_channels, out_channels, kernel_size, stride=2, padding=padding, output_padding=1, bias=bias)
|
45 |
+
|
46 |
+
if activation is not None:
|
47 |
+
self.activation = getattr(torch, activation)
|
48 |
+
else:
|
49 |
+
self.activation = None
|
50 |
+
|
51 |
+
self.norm = norm
|
52 |
+
if norm == 'BN':
|
53 |
+
self.norm_layer = nn.BatchNorm2d(out_channels)
|
54 |
+
elif norm == 'IN':
|
55 |
+
self.norm_layer = nn.InstanceNorm2d(out_channels, track_running_stats=True)
|
56 |
+
|
57 |
+
def forward(self, x):
|
58 |
+
out = self.transposed_conv2d(x)
|
59 |
|
60 |
+
if self.norm in ['BN', 'IN']:
|
61 |
+
out = self.norm_layer(out)
|
62 |
|
63 |
+
if self.activation is not None:
|
64 |
+
out = self.activation(out)
|
65 |
|
66 |
+
return out
|
67 |
|
|
|
68 |
|
69 |
+
class UpsampleConvLayer(nn.Module):
|
70 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, activation='relu', norm=None):
|
71 |
+
super(UpsampleConvLayer, self).__init__()
|
72 |
|
73 |
+
bias = False if norm == 'BN' else True
|
74 |
+
self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=bias)
|
75 |
|
76 |
+
if activation is not None:
|
77 |
+
self.activation = getattr(torch, activation)
|
78 |
else:
|
79 |
+
self.activation = None
|
80 |
|
81 |
+
self.norm = norm
|
82 |
+
if norm == 'BN':
|
83 |
+
self.norm_layer = nn.BatchNorm2d(out_channels)
|
84 |
+
elif norm == 'IN':
|
85 |
+
self.norm_layer = nn.InstanceNorm2d(out_channels, track_running_stats=True)
|
86 |
|
87 |
def forward(self, x):
|
88 |
+
x_upsampled = f.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)
|
89 |
+
out = self.conv2d(x_upsampled)
|
90 |
+
|
91 |
+
if self.norm in ['BN', 'IN']:
|
92 |
+
out = self.norm_layer(out)
|
93 |
+
|
94 |
+
if self.activation is not None:
|
95 |
+
out = self.activation(out)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
return out
|
98 |
|
99 |
|
100 |
+
class RecurrentConvLayer(nn.Module):
|
101 |
+
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=0,
|
102 |
+
recurrent_block_type='convlstm', activation='relu', norm=None, BN_momentum=0.1):
|
103 |
+
super(RecurrentConvLayer, self).__init__()
|
104 |
+
|
105 |
+
assert(recurrent_block_type in ['convlstm', 'convgru'])
|
106 |
+
self.recurrent_block_type = recurrent_block_type
|
107 |
+
if self.recurrent_block_type == 'convlstm':
|
108 |
+
RecurrentBlock = ConvLSTM
|
109 |
+
else:
|
110 |
+
RecurrentBlock = ConvGRU
|
111 |
+
|
112 |
+
# self.conv = ConvLayer(in_channels, out_channels, kernel_size, stride, padding, activation, norm,
|
113 |
+
# BN_momentum=BN_momentum)
|
114 |
+
self.recurrent_block = RecurrentBlock(input_size=out_channels, hidden_size=out_channels, kernel_size=3)
|
115 |
+
|
116 |
+
def forward(self, x, prev_state):
|
117 |
+
# x = self.conv(x)
|
118 |
+
state = self.recurrent_block(x, prev_state)
|
119 |
+
x = state[0] if self.recurrent_block_type == 'convlstm' else state
|
120 |
+
return x, state
|
121 |
+
|
122 |
+
class Recurrent2ConvLayer(nn.Module):
|
123 |
+
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=0,
|
124 |
+
recurrent_block_type='convlstm', activation='relu', norm=None, BN_momentum=0.1):
|
125 |
+
super(Recurrent2ConvLayer, self).__init__()
|
126 |
+
|
127 |
+
assert(recurrent_block_type in ['convlstm', 'convgru'])
|
128 |
+
self.recurrent_block_type = recurrent_block_type
|
129 |
+
if self.recurrent_block_type == 'convlstm':
|
130 |
+
RecurrentBlock = ConvLSTM
|
131 |
+
else:
|
132 |
+
RecurrentBlock = ConvGRU
|
133 |
+
|
134 |
+
self.conv = ConvLayer(in_channels, out_channels, kernel_size, stride, padding, activation, norm,
|
135 |
+
BN_momentum=BN_momentum)
|
136 |
+
self.recurrent_block = RecurrentBlock(input_size=out_channels, hidden_size=out_channels, kernel_size=3)
|
137 |
|
138 |
+
def forward(self, x, prev_state):
|
139 |
+
x = self.conv(x)
|
140 |
+
state = self.recurrent_block(x, prev_state)
|
141 |
+
x = state[0] if self.recurrent_block_type == 'convlstm' else state
|
142 |
+
return x, state
|
143 |
|
|
|
144 |
|
145 |
+
class RecurrentPhasedConvLayer(nn.Module):
|
146 |
+
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=0,
|
147 |
+
activation='relu', norm=None, BN_momentum=0.1):
|
148 |
+
super(RecurrentPhasedConvLayer, self).__init__()
|
149 |
|
150 |
+
self.conv = ConvLayer(in_channels, out_channels, kernel_size, stride, padding, activation, norm,
|
151 |
+
BN_momentum=BN_momentum)
|
152 |
+
self.recurrent_block = PhasedConvLSTMCell(input_channels=out_channels, hidden_channels=out_channels, kernel_size=3)
|
153 |
|
154 |
+
def forward(self, x, times, prev_state):
|
155 |
+
x = self.conv(x)
|
156 |
+
x, state = self.recurrent_block(x, times, prev_state)
|
157 |
+
return x, state
|
158 |
+
|
159 |
+
|
160 |
+
class DownsampleRecurrentConvLayer(nn.Module):
|
161 |
+
def __init__(self, in_channels, out_channels, kernel_size=3, recurrent_block_type='convlstm', padding=0, activation='relu'):
|
162 |
+
super(DownsampleRecurrentConvLayer, self).__init__()
|
163 |
+
|
164 |
+
self.activation = getattr(torch, activation)
|
165 |
+
|
166 |
+
assert(recurrent_block_type in ['convlstm', 'convgru'])
|
167 |
+
self.recurrent_block_type = recurrent_block_type
|
168 |
+
if self.recurrent_block_type == 'convlstm':
|
169 |
+
RecurrentBlock = ConvLSTM
|
170 |
else:
|
171 |
+
RecurrentBlock = ConvGRU
|
172 |
+
self.recurrent_block = RecurrentBlock(input_size=in_channels, hidden_size=out_channels, kernel_size=kernel_size)
|
173 |
+
|
174 |
+
def forward(self, x, prev_state):
|
175 |
+
state = self.recurrent_block(x, prev_state)
|
176 |
+
x = state[0] if self.recurrent_block_type == 'convlstm' else state
|
177 |
+
x = f.interpolate(x, scale_factor=0.5, mode='bilinear', align_corners=False)
|
178 |
+
return self.activation(x), state
|
179 |
+
|
180 |
+
|
181 |
+
# Residual block
|
182 |
+
class ResidualBlock(nn.Module):
|
183 |
+
def __init__(self, in_channels, out_channels, stride=1, downsample=None, norm=None,
|
184 |
+
BN_momentum=0.1):
|
185 |
+
super(ResidualBlock, self).__init__()
|
186 |
+
bias = False if norm == 'BN' else True
|
187 |
+
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=bias)
|
188 |
+
self.norm = norm
|
189 |
+
if norm == 'BN':
|
190 |
+
self.bn1 = nn.BatchNorm2d(out_channels, momentum=BN_momentum)
|
191 |
+
self.bn2 = nn.BatchNorm2d(out_channels, momentum=BN_momentum)
|
192 |
+
elif norm == 'IN':
|
193 |
+
self.bn1 = nn.InstanceNorm2d(out_channels)
|
194 |
+
self.bn2 = nn.InstanceNorm2d(out_channels)
|
195 |
+
|
196 |
+
self.relu = nn.ReLU(inplace=False)
|
197 |
+
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=bias)
|
198 |
+
self.downsample = downsample
|
199 |
|
200 |
def forward(self, x):
|
201 |
+
residual = x
|
202 |
+
out = self.conv1(x)
|
203 |
+
if self.norm in ['BN', 'IN']:
|
204 |
+
out = self.bn1(out)
|
205 |
+
out = self.relu(out)
|
206 |
+
out = self.conv2(out)
|
207 |
+
if self.norm in ['BN', 'IN']:
|
208 |
+
out = self.bn2(out)
|
209 |
+
|
210 |
+
if self.downsample:
|
211 |
+
residual = self.downsample(x)
|
212 |
+
|
213 |
+
out += residual
|
214 |
+
out = self.relu(out)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
return out
|
216 |
|
217 |
|
218 |
+
class PhasedLSTMCell(nn.Module):
|
219 |
+
"""Phased LSTM recurrent network cell.
|
220 |
+
"""
|
221 |
|
222 |
+
def __init__(
|
223 |
+
self,
|
224 |
+
hidden_size,
|
225 |
+
leak=0.001,
|
226 |
+
ratio_on=0.1,
|
227 |
+
period_init_min=0.02,
|
228 |
+
period_init_max=50.0
|
229 |
+
):
|
230 |
+
"""
|
231 |
+
Args:
|
232 |
+
hidden_size: int, The number of units in the Phased LSTM cell.
|
233 |
+
leak: float or scalar float Tensor with value in [0, 1]. Leak applied
|
234 |
+
during training.
|
235 |
+
ratio_on: float or scalar float Tensor with value in [0, 1]. Ratio of the
|
236 |
+
period during which the gates are open.
|
237 |
+
period_init_min: float or scalar float Tensor. With value > 0.
|
238 |
+
Minimum value of the initialized period.
|
239 |
+
The period values are initialized by drawing from the distribution:
|
240 |
+
e^U(log(period_init_min), log(period_init_max))
|
241 |
+
Where U(.,.) is the uniform distribution.
|
242 |
+
period_init_max: float or scalar float Tensor.
|
243 |
+
With value > period_init_min. Maximum value of the initialized period.
|
244 |
+
"""
|
245 |
super().__init__()
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
|
247 |
+
self.hidden_size = hidden_size
|
248 |
+
self.ratio_on = ratio_on
|
249 |
+
self.leak = leak
|
|
|
|
|
|
|
|
|
250 |
|
251 |
+
# initialize time-gating parameters
|
252 |
+
period = torch.exp(
|
253 |
+
torch.Tensor(hidden_size).uniform_(
|
254 |
+
math.log(period_init_min), math.log(period_init_max)
|
255 |
+
)
|
256 |
+
)
|
257 |
+
#self.tau = nn.Parameter(period)
|
258 |
+
self.register_parameter("tau", nn.Parameter(period))
|
259 |
|
260 |
+
phase = torch.Tensor(hidden_size).uniform_() * period
|
261 |
+
self.register_parameter("phase", nn.Parameter(phase))
|
262 |
+
self.phase.requires_grad = True
|
263 |
+
self.tau.requires_grad = True
|
264 |
+
#self.phase = nn.Parameter(phase)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
|
266 |
+
def _compute_phi(self, t):
|
267 |
+
t_ = t.view(-1, 1).repeat(1, self.hidden_size)
|
268 |
+
phase_ = self.phase.view(1, -1).repeat(t.shape[0], 1)
|
269 |
+
tau_ = self.tau.view(1, -1).repeat(t.shape[0], 1)
|
270 |
+
tau_.to(t_.device)
|
271 |
+
phase_.to(t_.device)
|
272 |
+
phi = self._mod((t_ - phase_), tau_)
|
273 |
+
phi = torch.abs(phi) / tau_
|
274 |
+
return phi
|
275 |
|
276 |
+
def _mod(self, x, y):
|
277 |
+
"""Modulo function that propagates x gradients."""
|
278 |
+
return x + (torch.fmod(x, y) - x).detach()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
|
280 |
+
def set_state(self, c, h):
|
281 |
+
self.h0 = h
|
282 |
+
self.c0 = c
|
283 |
|
284 |
+
def forward(self, c_s, h_s, t):
|
285 |
+
# print(c_s.size(), h_s.size(), t.size())
|
286 |
+
phi = self._compute_phi(t)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
287 |
|
288 |
+
# Phase-related augmentations
|
289 |
+
k_up = 2 * phi / self.ratio_on
|
290 |
+
k_down = 2 - k_up
|
291 |
+
k_closed = self.leak * phi
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
|
293 |
+
k = torch.where(phi < self.ratio_on, k_down, k_closed)
|
294 |
+
k = torch.where(phi < 0.5 * self.ratio_on, k_up, k)
|
295 |
+
k = k.view(c_s.shape[0], -1)
|
296 |
+
c_s_new = k * c_s + (1 - k) * self.c0
|
297 |
+
h_s_new = k * h_s + (1 - k) * self.h0
|
298 |
|
299 |
+
return h_s_new, c_s_new
|
|
|
300 |
|
|
|
|
|
|
|
|
|
|
|
|
|
301 |
|
302 |
+
class ConvLSTM(nn.Module):
|
303 |
+
"""Adapted from: https://github.com/Atcold/pytorch-CortexNet/blob/master/model/ConvLSTMCell.py """
|
|
|
|
|
|
|
|
|
304 |
|
305 |
+
def __init__(self, input_size, hidden_size, kernel_size):
|
306 |
+
super(ConvLSTM, self).__init__()
|
|
|
|
|
307 |
|
308 |
+
self.input_size = input_size
|
309 |
+
self.hidden_size = hidden_size
|
310 |
+
pad = kernel_size // 2
|
311 |
|
312 |
+
# cache a tensor filled with zeros to avoid reallocating memory at each inference step if --no-recurrent is enabled
|
313 |
+
self.zero_tensors = {}
|
314 |
|
315 |
+
self.Gates = nn.Conv2d(input_size + hidden_size, 4 * hidden_size, kernel_size, padding=pad)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
316 |
|
317 |
+
def forward(self, input_, prev_state=None):
|
318 |
+
# get batch and spatial sizes
|
319 |
+
batch_size = input_.data.size()[0]
|
320 |
+
spatial_size = input_.data.size()[2:]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
321 |
|
322 |
+
# generate empty prev_state, if None is provided
|
323 |
+
if prev_state is None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
324 |
|
325 |
+
# create the zero tensor if it has not been created already
|
326 |
+
state_size = tuple([batch_size, self.hidden_size] + list(spatial_size))
|
327 |
+
if state_size not in self.zero_tensors:
|
328 |
+
# allocate a tensor with size `spatial_size`, filled with zero (if it has not been allocated already)
|
329 |
+
self.zero_tensors[state_size] = (
|
330 |
+
torch.zeros(state_size, dtype=input_.dtype).to(input_.device),
|
331 |
+
torch.zeros(state_size, dtype=input_.dtype).to(input_.device)
|
332 |
+
)
|
333 |
+
|
334 |
+
prev_state = self.zero_tensors[tuple(state_size)]
|
335 |
+
|
336 |
+
prev_hidden, prev_cell = prev_state
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
337 |
|
338 |
+
# data size is [batch, channel, height, width]
|
339 |
+
stacked_inputs = torch.cat((input_, prev_hidden), 1)
|
340 |
+
gates = self.Gates(stacked_inputs)
|
341 |
|
342 |
+
# chunk across channel dimension
|
343 |
+
in_gate, remember_gate, out_gate, cell_gate = gates.chunk(4, 1)
|
344 |
+
|
345 |
+
# apply sigmoid non linearity
|
346 |
+
in_gate = torch.sigmoid(in_gate)
|
347 |
+
remember_gate = torch.sigmoid(remember_gate)
|
348 |
+
out_gate = torch.sigmoid(out_gate)
|
349 |
+
|
350 |
+
# apply tanh non linearity
|
351 |
+
cell_gate = torch.tanh(cell_gate)
|
352 |
+
|
353 |
+
# compute current cell and hidden state
|
354 |
+
cell = (remember_gate * prev_cell) + (in_gate * cell_gate)
|
355 |
+
hidden = out_gate * torch.tanh(cell)
|
356 |
+
|
357 |
+
return hidden, cell
|
358 |
+
|
359 |
+
|
360 |
+
class PhasedConvLSTMCell(nn.Module):
|
361 |
+
def __init__(
|
362 |
+
self,
|
363 |
+
input_channels,
|
364 |
+
hidden_channels,
|
365 |
+
kernel_size=3
|
366 |
+
):
|
367 |
+
super().__init__()
|
368 |
+
self.hidden_channels = hidden_channels
|
369 |
+
|
370 |
+
self.lstm = ConvLSTM(
|
371 |
+
input_size=input_channels,
|
372 |
+
hidden_size=hidden_channels,
|
373 |
+
kernel_size=kernel_size
|
374 |
+
)
|
375 |
+
|
376 |
+
# as soon as spatial dimension is known, phased lstm cell is instantiated
|
377 |
+
self.phased_cell = None
|
378 |
+
self.hidden_size = None
|
379 |
+
|
380 |
+
def forward(self, input, times, prev_state=None):
|
381 |
+
# input: B x C x H x W
|
382 |
+
# times: B
|
383 |
+
# returns: output: B x C_out x H x W, prev_state: (B x C_out x H x W, B x C_out x H x W)
|
384 |
+
|
385 |
+
B, C, H, W = input.shape
|
386 |
+
|
387 |
+
if self.hidden_size is None:
|
388 |
+
self.hidden_size = self.hidden_channels * W * H
|
389 |
+
self.phased_cell = PhasedLSTMCell(hidden_size=self.hidden_size)
|
390 |
+
self.phased_cell = self.phased_cell.to(input.device)
|
391 |
+
self.phased_cell.requires_grad = True
|
392 |
+
|
393 |
+
if prev_state is None:
|
394 |
+
h0 = input.new_zeros((B, self.hidden_channels, H, W))
|
395 |
+
c0 = input.new_zeros((B, self.hidden_channels, H, W))
|
396 |
else:
|
397 |
+
c0, h0 = prev_state
|
398 |
|
399 |
+
self.phased_cell.set_state(c0.view(B, -1), h0.view(B, -1))
|
400 |
+
|
401 |
+
c_t, h_t = self.lstm(input, (c0, h0))
|
402 |
+
|
403 |
+
# reshape activation maps such that phased lstm can use them
|
404 |
+
(c_s, h_s) = self.phased_cell(c_t.view(B, -1), h_t.view(B, -1), times)
|
405 |
+
|
406 |
+
# reshape to feed to conv lstm
|
407 |
+
c_s = c_s.view(B, -1, H, W)
|
408 |
+
h_s = h_s.view(B, -1, H, W)
|
409 |
+
|
410 |
+
return h_t, (c_s, h_s)
|
411 |
+
|
412 |
+
|
413 |
+
class ConvGRU(nn.Module):
|
414 |
+
"""
|
415 |
+
Generate a convolutional GRU cell
|
416 |
+
Adapted from: https://github.com/jacobkimmel/pytorch_convgru/blob/master/convgru.py
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
417 |
"""
|
418 |
|
419 |
+
def __init__(self, input_size, hidden_size, kernel_size):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
420 |
super().__init__()
|
421 |
+
padding = kernel_size // 2
|
422 |
+
self.input_size = input_size
|
423 |
+
self.hidden_size = hidden_size
|
424 |
+
self.reset_gate = nn.Conv2d(input_size + hidden_size, hidden_size, kernel_size, padding=padding)
|
425 |
+
self.update_gate = nn.Conv2d(input_size + hidden_size, hidden_size, kernel_size, padding=padding)
|
426 |
+
self.out_gate = nn.Conv2d(input_size + hidden_size, hidden_size, kernel_size, padding=padding)
|
427 |
+
|
428 |
+
init.orthogonal_(self.reset_gate.weight)
|
429 |
+
init.orthogonal_(self.update_gate.weight)
|
430 |
+
init.orthogonal_(self.out_gate.weight)
|
431 |
+
init.constant_(self.reset_gate.bias, 0.)
|
432 |
+
init.constant_(self.update_gate.bias, 0.)
|
433 |
+
init.constant_(self.out_gate.bias, 0.)
|
434 |
+
|
435 |
+
def forward(self, input_, prev_state):
|
436 |
+
|
437 |
+
# get batch and spatial sizes
|
438 |
+
batch_size = input_.data.size()[0]
|
439 |
+
spatial_size = input_.data.size()[2:]
|
440 |
+
|
441 |
+
# generate empty prev_state, if None is provided
|
442 |
+
if prev_state is None:
|
443 |
+
state_size = [batch_size, self.hidden_size] + list(spatial_size)
|
444 |
+
prev_state = torch.zeros(state_size, dtype=input_.dtype).to(input_.device)
|
445 |
+
|
446 |
+
# data size is [batch, channel, height, width]
|
447 |
+
stacked_inputs = torch.cat([input_, prev_state], dim=1)
|
448 |
+
update = torch.sigmoid(self.update_gate(stacked_inputs))
|
449 |
+
reset = torch.sigmoid(self.reset_gate(stacked_inputs))
|
450 |
+
out_inputs = torch.tanh(self.out_gate(torch.cat([input_, prev_state * reset], dim=1)))
|
451 |
+
new_state = prev_state * (1 - update) + out_inputs * update
|
452 |
+
|
453 |
+
return new_state
|
454 |
+
|
455 |
+
|
456 |
+
class RecurrentResidualLayer(nn.Module):
|
457 |
+
def __init__(self, in_channels, out_channels,
|
458 |
+
recurrent_block_type='convlstm', norm=None, BN_momentum=0.1):
|
459 |
+
super(RecurrentResidualLayer, self).__init__()
|
460 |
+
|
461 |
+
assert(recurrent_block_type in ['convlstm', 'convgru'])
|
462 |
+
self.recurrent_block_type = recurrent_block_type
|
463 |
+
if self.recurrent_block_type == 'convlstm':
|
464 |
+
RecurrentBlock = ConvLSTM
|
465 |
else:
|
466 |
+
RecurrentBlock = ConvGRU
|
467 |
+
self.conv = ResidualBlock(in_channels=in_channels,
|
468 |
+
out_channels=out_channels,
|
469 |
+
norm=norm,
|
470 |
+
BN_momentum=BN_momentum)
|
471 |
+
self.recurrent_block = RecurrentBlock(input_size=out_channels,
|
472 |
+
hidden_size=out_channels,
|
473 |
+
kernel_size=3)
|
474 |
+
|
475 |
+
def forward(self, x, prev_state):
|
476 |
+
x = self.conv(x)
|
477 |
+
state = self.recurrent_block(x, prev_state)
|
478 |
+
x = state[0] if self.recurrent_block_type == 'convlstm' else state
|
479 |
+
return x, state
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|