import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint import numpy as np from timm.models.layers import DropPath, trunc_normal_ from functools import reduce, lru_cache from operator import mul from einops import rearrange from submodules import ResidualBlock class residual_feature_generator(nn.Module): def __init__(self, dim): super(residual_feature_generator, self).__init__() self.dim = dim self.resblock1 = ResidualBlock(dim, dim, 1, norm='BN') self.resblock2 = ResidualBlock(dim, dim, 1, norm='BN') self.resblock3 = ResidualBlock(dim, dim, 1, norm='BN') self.resblock4 = ResidualBlock(dim, dim, 1, norm='BN') def forward(self, x): out = self.resblock1(x) out = self.resblock2(out) out = self.resblock3(out) out = self.resblock4(out) return out class feature_generator(nn.Module): def __init__(self, dim, kernel_size=3): super(feature_generator, self).__init__() self.dim = dim self.kernel_size = kernel_size self.conv1 = nn.Conv2d(in_channels=dim, out_channels=dim, kernel_size=kernel_size, stride=1, padding=(kernel_size-1)//2) self.conv2 = nn.Conv2d(in_channels=dim, out_channels=dim, kernel_size=kernel_size, stride=1, padding=(kernel_size-1)//2) self.conv3 = nn.Conv2d(in_channels=dim, out_channels=dim, kernel_size=kernel_size, stride=1, padding=(kernel_size-1)//2) self.conv4 = nn.Conv2d(in_channels=dim, out_channels=dim, kernel_size=kernel_size, stride=1, padding=(kernel_size-1)//2) self.bn1 = nn.BatchNorm2d(dim) self.bn2 = nn.BatchNorm2d(dim) self.bn3 = nn.BatchNorm2d(dim) self.bn4 = nn.BatchNorm2d(dim) def forward(self, x): out = F.leaky_relu(self.bn1(self.conv1(x)), negative_slope=0.01, inplace=False) out = F.leaky_relu(self.bn2(self.conv2(out)), negative_slope=0.01, inplace=False) out = F.leaky_relu(self.bn3(self.conv3(out)), negative_slope=0.01, inplace=False) out = F.leaky_relu(self.bn4(self.conv4(out)), negative_slope=0.01, inplace=False) return out class PatchEmbedLocalGlobal(nn.Module): def __init__(self, patch_size=(2,4,4), in_chans=3, embed_dim=96, norm_layer=None): super().__init__() self.patch_size = patch_size self.in_chans = in_chans self.embed_dim = embed_dim self.num_blocks = self.in_chans // patch_size[0] self.head = nn.Conv2d(in_chans // self.num_blocks, embed_dim // 2, kernel_size=3, stride=1, padding=1) self.global_head = nn.Conv2d(in_chans, embed_dim // 2, kernel_size=3, stride=1, padding=1) self.residual_encoding = residual_feature_generator(embed_dim//2) self.global_residual_encoding = residual_feature_generator(embed_dim//2) self.proj = nn.Conv2d(embed_dim//2, embed_dim//2, kernel_size=3, stride=patch_size[1:], padding=1) self.global_proj = nn.Conv2d(embed_dim//2, embed_dim//2, kernel_size=3, stride=patch_size[1:], padding=1) if norm_layer is not None: self.norm = norm_layer(embed_dim) else: self.norm = None # patches_resolution = [224 // patch_size[1], 224 // patch_size[2]] # self.absolute_pos_embed = nn.Parameter(torch.zeros(1, embed_dim, self.num_blocks, patches_resolution[0], patches_resolution[1])) # trunc_normal_(self.absolute_pos_embed, std=.02) def forward(self, x): """Forward function.""" # padding B, C, H, W = x.size() # if W % self.patch_size[2] != 0: # x = F.pad(x, (0, self.patch_size[2] - W % self.patch_size[2])) # if H % self.patch_size[1] != 0: # x = F.pad(x, (0, 0, 0, self.patch_size[1] - H % self.patch_size[1])) # if D % self.patch_size[0] != 0: # x = F.pad(x, (0, 0, 0, 0, 0, self.patch_size[0] - D % self.patch_size[0])) xs = x.chunk(self.num_blocks, 1) outs = [] outi_global = self.global_head(x) outi_global = self.global_residual_encoding(outi_global) outi_global = self.global_proj(outi_global) for i in range(self.num_blocks): outi_local = self.head(xs[i]) outi_local = self.residual_encoding(outi_local) outi_local = self.proj(outi_local) outi = torch.cat([outi_local, outi_global], dim=1) outi = outi.unsqueeze(2) outs.append(outi) out = torch.cat(outs, dim=2) # B, 96, 4, H, W # x = self.proj(x) # B C D Wh Ww if self.norm is not None: D, Wh, Ww = out.size(2), out.size(3), out.size(4) out = out.flatten(2).transpose(1, 2) out = self.norm(out) out = out.transpose(1, 2).view(-1, self.embed_dim, D, Wh, Ww) return out class PatchEmbedConv(nn.Module): def __init__(self, patch_size=(2,4,4), in_chans=3, embed_dim=96, norm_layer=None): super().__init__() self.patch_size = patch_size self.in_chans = in_chans self.embed_dim = embed_dim self.num_blocks = self.in_chans // patch_size[0] self.head = nn.Conv2d(in_chans // self.num_blocks, embed_dim, kernel_size=3, stride=1, padding=1) self.residual_encoding = residual_feature_generator(embed_dim) self.proj = nn.Conv2d(embed_dim, embed_dim, kernel_size=3, stride=patch_size[1:], padding=1) if norm_layer is not None: self.norm = norm_layer(embed_dim) else: self.norm = None def forward(self, x): """Forward function.""" # padding B, C, H, W = x.size() # if W % self.patch_size[2] != 0: # x = F.pad(x, (0, self.patch_size[2] - W % self.patch_size[2])) # if H % self.patch_size[1] != 0: # x = F.pad(x, (0, 0, 0, self.patch_size[1] - H % self.patch_size[1])) # if D % self.patch_size[0] != 0: # x = F.pad(x, (0, 0, 0, 0, 0, self.patch_size[0] - D % self.patch_size[0])) xs = x.chunk(self.num_blocks, 1) outs = [] for i in range(self.num_blocks): outi = self.head(xs[i]) outi = self.residual_encoding(outi) outi = self.proj(outi) outi = outi.unsqueeze(2) outs.append(outi) out = torch.cat(outs, dim=2) # B, 96, 4, H, W # x = self.proj(x) # B C D Wh Ww if self.norm is not None: D, Wh, Ww = out.size(2), out.size(3), out.size(4) out = out.flatten(2).transpose(1, 2) out = self.norm(out) out = out.transpose(1, 2).view(-1, self.embed_dim, D, Wh, Ww) return out class Mlp(nn.Module): """ Multilayer perceptron.""" def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x def window_partition(x, window_size): """ Args: x: (B, D, H, W, C) window_size (tuple[int]): window size Returns: windows: (B*num_windows, window_size*window_size, C) """ B, D, H, W, C = x.shape x = x.view(B, D // window_size[0], window_size[0], H // window_size[1], window_size[1], W // window_size[2], window_size[2], C) windows = x.permute(0, 1, 3, 5, 2, 4, 6, 7).contiguous().view(-1, reduce(mul, window_size), C) return windows def window_reverse(windows, window_size, B, D, H, W): """ Args: windows: (B*num_windows, window_size, window_size, C) window_size (tuple[int]): Window size H (int): Height of image W (int): Width of image Returns: x: (B, D, H, W, C) """ x = windows.view(B, D // window_size[0], H // window_size[1], W // window_size[2], window_size[0], window_size[1], window_size[2], -1) x = x.permute(0, 1, 4, 2, 5, 3, 6, 7).contiguous().view(B, D, H, W, -1) return x def get_window_size(x_size, window_size, shift_size=None): use_window_size = list(window_size) if shift_size is not None: use_shift_size = list(shift_size) for i in range(len(x_size)): if x_size[i] <= window_size[i]: use_window_size[i] = x_size[i] if shift_size is not None: use_shift_size[i] = 0 if shift_size is None: return tuple(use_window_size) else: return tuple(use_window_size), tuple(use_shift_size) class WindowAttention3D(nn.Module): """ Window based multi-head self attention (W-MSA) module with relative position bias. It supports both of shifted and non-shifted window. Args: dim (int): Number of input channels. window_size (tuple[int]): The temporal length, height and width of the window. num_heads (int): Number of attention heads. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 proj_drop (float, optional): Dropout ratio of output. Default: 0.0 """ def __init__(self, dim, window_size, num_heads, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() self.dim = dim self.window_size = window_size # Wd, Wh, Ww self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 # define a parameter table of relative position bias self.relative_position_bias_table = nn.Parameter( torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1) * (2 * window_size[2] - 1), num_heads)) # 2*Wd-1 * 2*Wh-1 * 2*Ww-1, nH # get pair-wise relative position index for each token inside the window coords_d = torch.arange(self.window_size[0]) coords_h = torch.arange(self.window_size[1]) coords_w = torch.arange(self.window_size[2]) coords = torch.stack(torch.meshgrid(coords_d, coords_h, coords_w)) # 3, Wd, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 3, Wd*Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 3, Wd*Wh*Ww, Wd*Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wd*Wh*Ww, Wd*Wh*Ww, 3 relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += self.window_size[1] - 1 relative_coords[:, :, 2] += self.window_size[2] - 1 relative_coords[:, :, 0] *= (2 * self.window_size[1] - 1) * (2 * self.window_size[2] - 1) relative_coords[:, :, 1] *= (2 * self.window_size[2] - 1) relative_position_index = relative_coords.sum(-1) # Wd*Wh*Ww, Wd*Wh*Ww self.register_buffer("relative_position_index", relative_position_index) self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) trunc_normal_(self.relative_position_bias_table, std=.02) self.softmax = nn.Softmax(dim=-1) def forward(self, x, mask=None): """ Forward function. Args: x: input features with shape of (num_windows*B, N, C) mask: (0/-inf) mask with shape of (num_windows, N, N) or None """ B_, N, C = x.shape qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # B_, nH, N, C q = q * self.scale attn = q @ k.transpose(-2, -1) relative_position_bias = self.relative_position_bias_table[self.relative_position_index[:N, :N].reshape(-1)].reshape( N, N, -1) # Wd*Wh*Ww,Wd*Wh*Ww,nH relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wd*Wh*Ww, Wd*Wh*Ww attn = attn + relative_position_bias.unsqueeze(0) # B_, nH, N, N if mask is not None: nW = mask.shape[0] attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) attn = attn.view(-1, self.num_heads, N, N) attn = self.softmax(attn) else: attn = self.softmax(attn) attn = self.attn_drop(attn) # print('attn: ', attn.shape, ', v: ', v.shape, ', x: ', x.shape) x = (attn @ v).transpose(1, 2).reshape(B_, N, C) x = self.proj(x) x = self.proj_drop(x) return x class SwinTransformerBlock3D(nn.Module): """ Swin Transformer Block. Args: dim (int): Number of input channels. num_heads (int): Number of attention heads. window_size (tuple[int]): Window size. shift_size (tuple[int]): Shift size for SW-MSA. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float, optional): Stochastic depth rate. Default: 0.0 act_layer (nn.Module, optional): Activation layer. Default: nn.GELU norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ def __init__(self, dim, num_heads, window_size=(2,7,7), shift_size=(0,0,0), mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_checkpoint=False): super().__init__() self.dim = dim self.num_heads = num_heads self.window_size = window_size self.shift_size = shift_size self.mlp_ratio = mlp_ratio self.use_checkpoint=use_checkpoint assert 0 <= self.shift_size[0] < self.window_size[0], "shift_size must in 0-window_size" assert 0 <= self.shift_size[1] < self.window_size[1], "shift_size must in 0-window_size" assert 0 <= self.shift_size[2] < self.window_size[2], "shift_size must in 0-window_size" self.norm1 = norm_layer(dim) self.attn = WindowAttention3D( dim, window_size=self.window_size, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward_part1(self, x, mask_matrix): B, D, H, W, C = x.shape window_size, shift_size = get_window_size((D, H, W), self.window_size, self.shift_size) # print('window_size: ', window_size, ', shift_size: ', shift_size) x = self.norm1(x) # pad feature maps to multiples of window size pad_l = pad_t = pad_d0 = 0 pad_d1 = (window_size[0] - D % window_size[0]) % window_size[0] pad_b = (window_size[1] - H % window_size[1]) % window_size[1] pad_r = (window_size[2] - W % window_size[2]) % window_size[2] x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b, pad_d0, pad_d1)) _, Dp, Hp, Wp, _ = x.shape # cyclic shift if any(i > 0 for i in shift_size): shifted_x = torch.roll(x, shifts=(-shift_size[0], -shift_size[1], -shift_size[2]), dims=(1, 2, 3)) attn_mask = mask_matrix else: shifted_x = x attn_mask = None # partition windows x_windows = window_partition(shifted_x, window_size) # B*nW, Wd*Wh*Ww, C # print('shifted_x: ', shifted_x.shape, 'x_windows: ', x_windows.shape) # W-MSA/SW-MSA attn_windows = self.attn(x_windows, mask=attn_mask) # B*nW, Wd*Wh*Ww, C # merge windows attn_windows = attn_windows.view(-1, *(window_size+(C,))) # print('attn_windows: ', attn_windows.shape) shifted_x = window_reverse(attn_windows, window_size, B, Dp, Hp, Wp) # B D' H' W' C # reverse cyclic shift if any(i > 0 for i in shift_size): x = torch.roll(shifted_x, shifts=(shift_size[0], shift_size[1], shift_size[2]), dims=(1, 2, 3)) else: x = shifted_x if pad_d1 >0 or pad_r > 0 or pad_b > 0: x = x[:, :D, :H, :W, :].contiguous() return x def forward_part2(self, x): return self.drop_path(self.mlp(self.norm2(x))) def forward(self, x, mask_matrix): """ Forward function. Args: x: Input feature, tensor size (B, D, H, W, C). mask_matrix: Attention mask for cyclic shift. """ shortcut = x if self.use_checkpoint: x = checkpoint.checkpoint(self.forward_part1, x, mask_matrix) else: x = self.forward_part1(x, mask_matrix) x = shortcut + self.drop_path(x) if self.use_checkpoint: x = x + checkpoint.checkpoint(self.forward_part2, x) else: x = x + self.forward_part2(x) return x class PatchMerging(nn.Module): """ Patch Merging Layer Args: dim (int): Number of input channels. norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ def __init__(self, dim, norm_layer=nn.LayerNorm): super().__init__() self.dim = dim self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) self.norm = norm_layer(4 * dim) def forward(self, x): """ Forward function. Args: x: Input feature, tensor size (B, D, H, W, C). """ B, D, H, W, C = x.shape # padding pad_input = (H % 2 == 1) or (W % 2 == 1) if pad_input: x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2)) x0 = x[:, :, 0::2, 0::2, :] # B D H/2 W/2 C x1 = x[:, :, 1::2, 0::2, :] # B D H/2 W/2 C x2 = x[:, :, 0::2, 1::2, :] # B D H/2 W/2 C x3 = x[:, :, 1::2, 1::2, :] # B D H/2 W/2 C x = torch.cat([x0, x1, x2, x3], -1) # B D H/2 W/2 4*C x = self.norm(x) x = self.reduction(x) return x # cache each stage results @lru_cache() def compute_mask(D, H, W, window_size, shift_size, device): img_mask = torch.zeros((1, D, H, W, 1), device=device) # 1 Dp Hp Wp 1 cnt = 0 for d in slice(-window_size[0]), slice(-window_size[0], -shift_size[0]), slice(-shift_size[0],None): for h in slice(-window_size[1]), slice(-window_size[1], -shift_size[1]), slice(-shift_size[1],None): for w in slice(-window_size[2]), slice(-window_size[2], -shift_size[2]), slice(-shift_size[2],None): img_mask[:, d, h, w, :] = cnt cnt += 1 mask_windows = window_partition(img_mask, window_size) # nW, ws[0]*ws[1]*ws[2], 1 mask_windows = mask_windows.squeeze(-1) # nW, ws[0]*ws[1]*ws[2] attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) return attn_mask class BasicLayer(nn.Module): """ A basic Swin Transformer layer for one stage. Args: dim (int): Number of feature channels depth (int): Depths of this stage. num_heads (int): Number of attention head. window_size (tuple[int]): Local window size. Default: (1,7,7). mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None """ def __init__(self, dim, depth, num_heads, window_size=(1,7,7), mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False): super().__init__() self.window_size = window_size self.shift_size = tuple(i // 2 for i in window_size) self.depth = depth self.use_checkpoint = use_checkpoint # build blocks self.blocks = nn.ModuleList([ SwinTransformerBlock3D( dim=dim, num_heads=num_heads, window_size=window_size, shift_size=(0,0,0) if (i % 2 == 0) else self.shift_size, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop, attn_drop=attn_drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, norm_layer=norm_layer, use_checkpoint=use_checkpoint, ) for i in range(depth)]) self.downsample = downsample if self.downsample is not None: self.downsample = downsample(dim=dim, norm_layer=norm_layer) def forward(self, x): """ Forward function. Args: x: Input feature, tensor size (B, C, D, H, W). """ # calculate attention mask for SW-MSA B, C, D, H, W = x.shape window_size, shift_size = get_window_size((D,H,W), self.window_size, self.shift_size) x = rearrange(x, 'b c d h w -> b d h w c') Dp = int(np.ceil(D / window_size[0])) * window_size[0] Hp = int(np.ceil(H / window_size[1])) * window_size[1] Wp = int(np.ceil(W / window_size[2])) * window_size[2] attn_mask = compute_mask(Dp, Hp, Wp, window_size, shift_size, x.device) for blk in self.blocks: x = blk(x, attn_mask) # print(x.shape) x = x.view(B, D, H, W, -1) if self.downsample is not None: x_out = self.downsample(x) else: x_out = x x_out = rearrange(x_out, 'b d h w c -> b c d h w') return x_out, x class PatchEmbed3D(nn.Module): """ Video to Patch Embedding. Args: patch_size (int): Patch token size. Default: (2,4,4). in_chans (int): Number of input video channels. Default: 3. embed_dim (int): Number of linear projection output channels. Default: 96. norm_layer (nn.Module, optional): Normalization layer. Default: None """ def __init__(self, patch_size=(2,4,4), in_chans=3, embed_dim=96, norm_layer=None): super().__init__() self.patch_size = patch_size self.in_chans = in_chans self.embed_dim = embed_dim # self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) self.proj = nn.Conv3d(1, embed_dim, kernel_size=patch_size, stride=patch_size) if norm_layer is not None: self.norm = norm_layer(embed_dim) else: self.norm = None def forward(self, x): """Forward function.""" # padding x = x.unsqueeze(1) _, _, D, H, W = x.size() if W % self.patch_size[2] != 0: x = F.pad(x, (0, self.patch_size[2] - W % self.patch_size[2])) if H % self.patch_size[1] != 0: x = F.pad(x, (0, 0, 0, self.patch_size[1] - H % self.patch_size[1])) if D % self.patch_size[0] != 0: x = F.pad(x, (0, 0, 0, 0, 0, self.patch_size[0] - D % self.patch_size[0])) x = self.proj(x) # B C D Wh Ww if self.norm is not None: D, Wh, Ww = x.size(2), x.size(3), x.size(4) x = x.flatten(2).transpose(1, 2) x = self.norm(x) x = x.transpose(1, 2).view(-1, self.embed_dim, D, Wh, Ww) return x class SwinTransformer3D(nn.Module): """ Swin Transformer backbone. Args: patch_size (int | tuple(int)): Patch size. Default: (4,4,4). in_chans (int): Number of input image channels. Default: 3. embed_dim (int): Number of linear projection output channels. Default: 96. depths (tuple[int]): Depths of each Swin Transformer stage. num_heads (tuple[int]): Number of attention head of each stage. window_size (int): Window size. Default: 7. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: Truee qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. drop_rate (float): Dropout rate. attn_drop_rate (float): Attention dropout rate. Default: 0. drop_path_rate (float): Stochastic depth rate. Default: 0.2. norm_layer: Normalization layer. Default: nn.LayerNorm. patch_norm (bool): If True, add normalization after patch embedding. Default: False. frozen_stages (int): Stages to be frozen (stop grad and set eval mode). -1 means not freezing any parameters. """ def __init__(self, pretrained=None, pretrained2d=True, patch_size=(4,4,4), in_chans=3, embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=(2,7,7), mlp_ratio=4., qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.2, norm_layer=nn.LayerNorm, patch_norm=False, out_indices=(0,1,2,3), frozen_stages=-1, use_checkpoint=False, new_version=0): super().__init__() self.pretrained = pretrained self.pretrained2d = pretrained2d self.num_layers = len(depths) self.embed_dim = embed_dim self.patch_norm = patch_norm self.frozen_stages = frozen_stages self.window_size = window_size self.patch_size = patch_size self.out_indices = out_indices # split image into non-overlapping patches if new_version==3: print("---- new version 3 ----") self.patch_embed = PatchEmbedConv( patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, norm_layer=norm_layer if self.patch_norm else None) elif new_version==4: print("---- new version 4 ----") self.patch_embed = PatchEmbedLocalGlobal( patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, norm_layer=norm_layer if self.patch_norm else None) else: print("---- old version ----") self.patch_embed = PatchEmbed3D( patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, norm_layer=norm_layer if self.patch_norm else None) self.pos_drop = nn.Dropout(p=drop_rate) # stochastic depth dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule # build layers self.layers = nn.ModuleList() for i_layer in range(self.num_layers): layer = BasicLayer( dim=int(embed_dim * 2**i_layer), depth=depths[i_layer], num_heads=num_heads[i_layer], window_size=window_size, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], norm_layer=norm_layer, downsample=PatchMerging if i_layer loaded successfully '{self.pretrained}'") del checkpoint torch.cuda.empty_cache() def init_weights(self, pretrained=None): """Initialize the weights in backbone. Args: pretrained (str, optional): Path to pre-trained weights. Defaults to None. """ def _init_weights(m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) if pretrained: self.pretrained = pretrained if isinstance(self.pretrained, str): self.apply(_init_weights) logger = get_root_logger() logger.info(f'load model from: {self.pretrained}') if self.pretrained2d: # Inflate 2D model into 3D model. self.inflate_weights(logger) else: # Directly load 3D model. load_checkpoint(self, self.pretrained, strict=False, logger=logger) elif self.pretrained is None: self.apply(_init_weights) else: raise TypeError('pretrained must be a str or None') def forward(self, x): """Forward function.""" x = self.patch_embed(x) # print(x.shape) x = self.pos_drop(x) outs = [] for i, layer in enumerate(self.layers): x, out_x = layer(x.contiguous()) # print('---- ', out_x.shape) if i in self.out_indices: norm_layer = getattr(self, f'norm{i}') out_x = norm_layer(out_x) _, Ti, Hi, Wi, Ci = out_x.shape out = rearrange(out_x, 'n d h w c -> n c d h w') outs.append(out) return tuple(outs)