# -*- coding: utf-8 -*- # @Time : 2022/6/12 15:21 # @Author : Yajing Zheng # @File : visualize.py import cv2 import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import matplotlib.cm as cm import matplotlib.animation as animation def obtain_spike_video(spikes, video_filename, **dataDict): spike_h = dataDict.get('spike_h') spike_w = dataDict.get('spike_w') timestamps = spikes.shape[0] mov = cv2.VideoWriter(video_filename, cv2.VideoWriter_fourcc(*'MJPG'), 30, (spike_w, spike_h)) for iSpk in range(timestamps): tmpSpk = spikes[iSpk, :, :] * 255 tmpSpk = cv2.cvtColor(tmpSpk.astype(np.uint8), cv2.COLOR_GRAY2BGR) mov.write(tmpSpk) mov.release() def obtain_reconstruction_video(images, video_filename, **dataDict): spike_h = dataDict.get('spike_h') spike_w = dataDict.get('spike_w') img_num = images.shape[0] mov = cv2.VideoWriter(video_filename, cv2.VideoWriter_fourcc(*'MJPG'), 30, (spike_w, spike_h)) for iImg in range(img_num): tmp_img = images[iImg, :, :] tmp_img = cv2.cvtColor(tmp_img, cv2.COLOR_GRAY2BGR) mov.write(tmp_img) mov.release() def obtain_mot_video(spikes, video_filename, res_filepath, **dataDict): spike_h = dataDict.get('spike_h') spike_w = dataDict.get('spike_w') gt_file = dataDict.get('labeled_data_dir') gt_boxes = {} if gt_file is not None: gt_f = open(gt_file, 'r') gt_lines = gt_f.readlines() for line in gt_lines: gt_term = line.split(',') time_step = gt_term[0] box_id = gt_term[1] x = float(gt_term[2]) y = float(gt_term[3]) w = float(gt_term[4]) h = float(gt_term[5]) if str(time_step) not in gt_boxes: gt_boxes[str(time_step)] = [] bbox = [box_id, x, y, w, h] gt_boxes[str(time_step)].append(bbox) gt_f.close() result_file = res_filepath test_boxes = {} result_f = open(result_file, 'r') result_lines = result_f.readlines() color_dict = {} for line in result_lines: res_box = line.split(',') time_step = res_box[0] track_id = res_box[1] if track_id not in color_dict.keys(): colors = (np.random.rand(1, 3) * 255).astype(np.uint8) color_dict[track_id] = np.squeeze(colors) x = float(res_box[2]) y = float(res_box[3]) w = float(res_box[4]) h = float(res_box[5]) if str(time_step) not in test_boxes: test_boxes[str(time_step)] = [] test_box = [track_id, x, y, w, h] test_boxes[str(time_step)].append(test_box) result_f.close() mov = cv2.VideoWriter(video_filename, cv2.VideoWriter_fourcc(*'MJPG'), 30, (spike_w, spike_h)) timestamps = spikes.shape[0] for t in range(151, timestamps): # for t in range(160, 1000): tmp_ivs = spikes[t, :, :] * 255 tmp_ivs = cv2.cvtColor(tmp_ivs.astype(np.uint8), cv2.COLOR_GRAY2BGR) if len(gt_boxes) > 0: if str(t) in gt_boxes: gts = gt_boxes[str(t)] gt_num = len(gts) for i in range(gt_num): box = gts[i] box_id = box[0] cv2.rectangle(tmp_ivs, (int(box[2]), int(box[1])), (int(box[2] + box[4]), int(box[1] + box[3])), (int(255), int(255), int(255)), 2) if str(t) in test_boxes: test = test_boxes[str(t)] test_num = len(test) for i in range(test_num): box = test[i] box_id = box[0] colors = color_dict[box_id] cv2.rectangle(tmp_ivs, (int(box[2]), int(box[1])), (int(box[2] + box[4]), int(box[1] + box[3])), (int(colors[0]), int(colors[1]), int(colors[2])), 2) mov.write(tmp_ivs) mov.release() def obtain_detection_video(spikes, video_filename, res_filepath, evaluate_seq_len, begin_idx=0, **dataDict): spike_h = dataDict.get('spike_h') spike_w = dataDict.get('spike_w') gt_file = dataDict.get('labeled_data_dir') gt_boxes = {} if gt_file is not None: start_idx = begin_idx end_idx = begin_idx + evaluate_seq_len for seq_no in range(start_idx, end_idx): gt_filename = gt_file[seq_no] gt_f = open(gt_filename, 'r') gt_lines = gt_f.readlines() for line in gt_lines: tmp_box = line.split(',') x = float(tmp_box[0]) y = float(tmp_box[1]) w = float(tmp_box[2]) h = float(tmp_box[3]) box_id = int(0) if str(seq_no) not in gt_boxes: gt_boxes[str(seq_no)] = [] bbox = [box_id, x, y, w, h] gt_boxes[str(seq_no)].append(bbox) gt_f.close() result_file = res_filepath test_boxes = {} result_f = open(result_file, 'r') result_lines = result_f.readlines() color_dict = {} for line in result_lines: res_box = line.split(',') time_step = res_box[0] track_id = res_box[1] if track_id not in color_dict.keys(): colors = (np.random.rand(1, 3) * 255).astype(np.uint8) color_dict[track_id] = np.squeeze(colors) x = float(res_box[2]) y = float(res_box[3]) w = float(res_box[4]) h = float(res_box[5]) if str(time_step) not in test_boxes: test_boxes[str(time_step)] = [] test_box = [track_id, x, y, w, h] test_boxes[str(time_step)].append(test_box) result_f.close() mov = cv2.VideoWriter(video_filename, cv2.VideoWriter_fourcc(*'MJPG'), 30, (spike_w, spike_h)) block_len = spikes.shape[0] # gt_intv = int(block_len/evaluate_seq_len) gt_intv = 400 # for t in range(150, block_len): for i_gt in range(start_idx+1, end_idx): t = i_gt * gt_intv + int(gt_intv/2) tmp_ivs = spikes[t, :, :] * 255 tmp_ivs = cv2.cvtColor(tmp_ivs.astype(np.uint8), cv2.COLOR_GRAY2BGR) if len(gt_boxes) > 0: gts = gt_boxes[str(i_gt)] gt_num = len(gts) for i in range(gt_num): box = gts[i] cv2.rectangle(tmp_ivs, (int(spike_w - box[1]), int(box[2])), (int(spike_w - box[1] - box[3]), int(box[2] + box[4])), (int(255), int(255), int(255)), 2) if str(t) in test_boxes: test = test_boxes[str(t)] test_num = len(test) for i in range(test_num): box = test[i] box_id = box[0] colors = color_dict[box_id] cv2.rectangle(tmp_ivs, (int(box[2]), int(box[1])), (int(box[2] + box[4]), int(box[1] + box[3])), (int(colors[0]), int(colors[1]), int(colors[2])), 2) mov.write(tmp_ivs) mov.release() def get_heatVideo(results, video_filename): results = np.array(results) frame_num = results.shape[0] frames = [] fig = plt.figure() for i in range(frame_num): tmp_res = results[i] # frames.append([plt.imshow(tmp_res, cmap=cm.Greys_r, animated=True)]) frames.append([plt.imshow(tmp_res, cmap=cm.Blues, animated=True)]) ani = animation.ArtistAnimation(fig, frames, interval=50, blit=True, repeat_delay=1000) # change the path to where you save ffmpeg plt.rcParams['animation.ffmpeg_path'] = 'F:\\ffmpeg-N-99818-g993429cfb4-win64-gpl-shared-vulkan\\bin\\ffmpeg.exe' FFwrite = animation.FFMpegWriter(fps=30, extra_args=['-vcodec', 'libx264']) ani.save(video_filename, writer=FFwrite) plt.show()