File size: 91,848 Bytes
c6cad00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sparse-encoder
- sparse
- splade
- generated_from_trainer
- dataset_size:90000
- loss:SpladeLoss
- loss:SparseMarginMSELoss
- loss:FlopsLoss
base_model: Luyu/co-condenser-marco
widget:
- text: how old do you have to be to have lasik
- text: when is house of cards on netflix
- text: Answer by lauryn (194). The length of time it takes a women to get her period
    after giving birth varies from women to women. For many women it can take about
    2 to 3 months before your period returns to normal. If you are nursing than this
    time frame will last even longer.
- text: what are cys residues
- text: "You heard about fastest cars, bikes and plans but today we have world fastest\
    \ bird collection. In our collection we have top 10 fastest birds of the world.\
    \ Birdâ\x80\x99s flight speed is fundamentally changeable; a hunting bird speed\
    \ will increase while diving-to-catch prey as compared to its gliding speeds.\
    \ Here we have the top 10 fastest birds with their flight speed. 10. Teal 109\
    \ km/h (68mph) This bird can fly 109 km/ h (68mph); they are 53 to 59cm long.\
    \ This bird always lives in group. 09."
datasets:
- sentence-transformers/msmarco
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
- query_active_dims
- query_sparsity_ratio
- corpus_active_dims
- corpus_sparsity_ratio
co2_eq_emissions:
  emissions: 34.21475343773813
  energy_consumed: 0.0926891546467269
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: AMD EPYC 7R13 Processor
  ram_total_size: 248.0
  hours_used: 0.305
  hardware_used: 1 x NVIDIA H100 80GB HBM3
model-index:
- name: splade-co-condenser-marco trained on MS MARCO hard negatives with distillation
  results:
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoMSMARCO
      type: NanoMSMARCO
    metrics:
    - type: dot_accuracy@1
      value: 0.4
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.62
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.68
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.84
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.4
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.20666666666666667
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.136
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.08399999999999999
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.4
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.62
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.68
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.84
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.6076647728795561
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.5352777777777777
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.5419469179877314
      name: Dot Map@100
    - type: query_active_dims
      value: 54.119998931884766
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9982268527969371
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 187.67538452148438
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.993851143944647
      name: Corpus Sparsity Ratio
    - type: dot_accuracy@1
      value: 0.4
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.62
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.68
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.84
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.4
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.20666666666666667
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.136
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.08399999999999999
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.4
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.62
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.68
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.84
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.6076647728795561
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.5352777777777777
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.5419469179877314
      name: Dot Map@100
    - type: query_active_dims
      value: 54.119998931884766
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9982268527969371
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 187.67538452148438
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.993851143944647
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoNFCorpus
      type: NanoNFCorpus
    metrics:
    - type: dot_accuracy@1
      value: 0.44
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.6
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.64
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.68
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.44
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.34
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.316
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.27
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.06311467051346893
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.09895898433766803
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.1169352131561954
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.14677603057730104
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.34523070842752446
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.5258333333333334
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.16994217536385264
      name: Dot Map@100
    - type: query_active_dims
      value: 51.70000076293945
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9983061398085663
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 336.32476806640625
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9889809066225539
      name: Corpus Sparsity Ratio
    - type: dot_accuracy@1
      value: 0.44
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.6
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.64
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.68
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.44
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.34
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.316
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.27
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.06311467051346893
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.09895898433766803
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.1169352131561954
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.14677603057730104
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.34523070842752446
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.5258333333333334
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.16994217536385264
      name: Dot Map@100
    - type: query_active_dims
      value: 51.70000076293945
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9983061398085663
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 336.32476806640625
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9889809066225539
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoNQ
      type: NanoNQ
    metrics:
    - type: dot_accuracy@1
      value: 0.52
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.74
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.78
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.84
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.52
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.2533333333333333
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.16
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.08999999999999998
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.48
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.69
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.73
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.8
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.6594960548473345
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.6369365079365078
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.6105143613696246
      name: Dot Map@100
    - type: query_active_dims
      value: 53.34000015258789
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9982524080940768
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 223.5908660888672
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9926744359449294
      name: Corpus Sparsity Ratio
    - type: dot_accuracy@1
      value: 0.52
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.74
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.78
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.84
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.52
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.2533333333333333
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.16
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.08999999999999998
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.48
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.69
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.73
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.8
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.6594960548473345
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.6369365079365078
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.6105143613696246
      name: Dot Map@100
    - type: query_active_dims
      value: 53.34000015258789
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9982524080940768
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 223.5908660888672
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9926744359449294
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-nano-beir
      name: Sparse Nano BEIR
    dataset:
      name: NanoBEIR mean
      type: NanoBEIR_mean
    metrics:
    - type: dot_accuracy@1
      value: 0.45333333333333337
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.6533333333333333
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.7000000000000001
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.7866666666666666
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.45333333333333337
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.26666666666666666
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.204
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.148
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.314371556837823
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.4696529947792227
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.5089784043853984
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.5955920101924337
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.5374638453848051
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.566015873015873
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.4408011515737362
      name: Dot Map@100
    - type: query_active_dims
      value: 53.0533332824707
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9982618002331933
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 235.2385860639544
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9922928187515905
      name: Corpus Sparsity Ratio
    - type: dot_accuracy@1
      value: 0.5580533751962323
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.7137205651491366
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.7722448979591837
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.8291679748822605
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.5580533751962323
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.3332705389848246
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.26179591836734695
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.179171114599686
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.32499349487208484
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.4721752731683537
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.5337131771857326
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.6042058945750339
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.578707182604652
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.6493701377987092
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.5041070229886567
      name: Dot Map@100
    - type: query_active_dims
      value: 86.67950763908115
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.997160097384212
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 230.5675761418069
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.992445856230201
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoClimateFEVER
      type: NanoClimateFEVER
    metrics:
    - type: dot_accuracy@1
      value: 0.32
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.52
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.54
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.62
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.32
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.2
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.14
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.08199999999999999
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.165
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.26
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.28733333333333333
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.32233333333333336
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.30365156381250225
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.4207222222222222
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.25580876542561
      name: Dot Map@100
    - type: query_active_dims
      value: 135.3000030517578
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.99556713180487
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 270.1291198730469
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9911496913743186
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoDBPedia
      type: NanoDBPedia
    metrics:
    - type: dot_accuracy@1
      value: 0.74
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.86
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.9
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.94
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.74
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.6133333333333333
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.588
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.508
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.07635143960629845
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.1800129405239251
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.23739681193828663
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.33976750488378327
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.622759301760137
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.8137142857142856
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.4830025510651395
      name: Dot Map@100
    - type: query_active_dims
      value: 52.2599983215332
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9982877924670227
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 219.79901123046875
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9927986694439921
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoFEVER
      type: NanoFEVER
    metrics:
    - type: dot_accuracy@1
      value: 0.8
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.92
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.94
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.96
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.8
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.31999999999999995
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.204
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.10599999999999998
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.7566666666666666
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.8866666666666667
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.92
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.95
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.871923100931238
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.8608333333333333
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.8427126216077829
      name: Dot Map@100
    - type: query_active_dims
      value: 79.13999938964844
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9974071161984913
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 287.1961669921875
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9905905193961015
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoFiQA2018
      type: NanoFiQA2018
    metrics:
    - type: dot_accuracy@1
      value: 0.42
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.52
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.58
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.68
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.42
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.21333333333333332
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.16799999999999998
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.11
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.23607936507936508
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.31813492063492066
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.3794920634920635
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.4829047619047619
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.41245963928815416
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.4934444444444444
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.35636809652397866
      name: Dot Map@100
    - type: query_active_dims
      value: 54.040000915527344
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9982294737921654
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 213.87989807128906
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.992992598844398
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoHotpotQA
      type: NanoHotpotQA
    metrics:
    - type: dot_accuracy@1
      value: 0.88
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.94
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.96
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.96
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.88
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.5133333333333333
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.3399999999999999
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.17199999999999996
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.44
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.77
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.85
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.86
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.8259863564109206
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.9116666666666667
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.772433308579342
      name: Dot Map@100
    - type: query_active_dims
      value: 68.36000061035156
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9977603040229883
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 223.86521911621094
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9926654472473556
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoQuoraRetrieval
      type: NanoQuoraRetrieval
    metrics:
    - type: dot_accuracy@1
      value: 0.9
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 1.0
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 1.0
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 1.0
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.9
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.38666666666666655
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.24799999999999997
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.12999999999999998
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.8073333333333333
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.938
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.9653333333333333
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.98
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.9411045044022702
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.9466666666666665
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.9183274196019293
      name: Dot Map@100
    - type: query_active_dims
      value: 57.5
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9981161129676954
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 58.39020919799805
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9980869468187538
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoSCIDOCS
      type: NanoSCIDOCS
    metrics:
    - type: dot_accuracy@1
      value: 0.42
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.56
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.74
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.78
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.42
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.28
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.25199999999999995
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.154
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.08766666666666667
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.17266666666666666
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.25766666666666665
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.31566666666666665
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.3183178982652113
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.5296904761904762
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.24557421391176226
      name: Dot Map@100
    - type: query_active_dims
      value: 73.30000305175781
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9975984534744854
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 293.607177734375
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9903804738308638
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoArguAna
      type: NanoArguAna
    metrics:
    - type: dot_accuracy@1
      value: 0.14
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.42
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.58
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.7
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.14
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.13999999999999999
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.11600000000000002
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.07
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.14
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.42
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.58
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.7
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.40946212538272647
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.317547619047619
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.3292918677514585
      name: Dot Map@100
    - type: query_active_dims
      value: 281.1600036621094
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.990788283740839
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 268.114990234375
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.991215680812713
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoSciFact
      type: NanoSciFact
    metrics:
    - type: dot_accuracy@1
      value: 0.54
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.66
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.74
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.82
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.54
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.24
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.16799999999999998
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.092
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.52
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.65
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.74
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.81
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.668993132237426
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.623968253968254
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.6278823742890459
      name: Dot Map@100
    - type: query_active_dims
      value: 109.4000015258789
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9964157001007182
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 348.5179748535156
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9885814175069289
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoTouche2020
      type: NanoTouche2020
    metrics:
    - type: dot_accuracy@1
      value: 0.7346938775510204
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.9183673469387755
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.9591836734693877
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.9591836734693877
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.7346938775510204
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.6258503401360545
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.5673469387755103
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.4612244897959184
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.052703291471304
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.1338383723587515
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.19411388149464573
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.30722833210959427
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.5361442152154757
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.8255102040816327
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.3995866253752792
      name: Dot Map@100
    - type: query_active_dims
      value: 56.61224365234375
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9981451987532814
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 224.8710174560547
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9926324940221462
      name: Corpus Sparsity Ratio
---

# splade-co-condenser-marco trained on MS MARCO hard negatives with distillation

This is a [SPLADE Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [Luyu/co-condenser-marco](https://huggingface.co/Luyu/co-condenser-marco) on the [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco) dataset using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space   and can be used for semantic search and sparse retrieval.
## Model Details

### Model Description
- **Model Type:** SPLADE Sparse Encoder
- **Base model:** [Luyu/co-condenser-marco](https://huggingface.co/Luyu/co-condenser-marco) <!-- at revision e0cef0ab2410aae0f0994366ddefb5649a266709 -->
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 30522 dimensions
- **Similarity Function:** Dot Product
- **Training Dataset:**
    - [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco)
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)

### Full Model Architecture

```
SparseEncoder(
  (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM 
  (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SparseEncoder

# Download from the 🤗 Hub
model = SparseEncoder("arthurbresnu/co-condenser-marco-msmarco-hard-negatives")
# Run inference
queries = [
    "fastest super cars in the world",
]
documents = [
    'The McLaren F1 is amongst the fastest cars in the McLaren series and also the fastest car in the world. The McLaren F1 can clock a maximum speed of 240 miles per hour, or an equivalent of 386 km per hour.',
    'You heard about fastest cars, bikes and plans but today we have world fastest bird collection. In our collection we have top 10 fastest birds of the world. Birdâ\x80\x99s flight speed is fundamentally changeable; a hunting bird speed will increase while diving-to-catch prey as compared to its gliding speeds. Here we have the top 10 fastest birds with their flight speed. 10. Teal 109 km/h (68mph) This bird can fly 109 km/ h (68mph); they are 53 to 59cm long. This bird always lives in group. 09.',
    'Where is Langley, BC? Location of Langley on a map. Langley is a city found in British Columbia, Canada. It is located 49.08 latitude and -122.59 longitude and it is situated at elevation 78 meters above sea level. Langley has a population of 93,726 making it the 13th biggest city in British Columbia.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 30522] [3, 30522]

# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[35.7080, 24.5349,  3.8619]])
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Sparse Information Retrieval

* Datasets: `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoClimateFEVER`, `NanoDBPedia`, `NanoFEVER`, `NanoFiQA2018`, `NanoHotpotQA`, `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoQuoraRetrieval`, `NanoSCIDOCS`, `NanoArguAna`, `NanoSciFact` and `NanoTouche2020`
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator)

| Metric                | NanoMSMARCO | NanoNFCorpus | NanoNQ     | NanoClimateFEVER | NanoDBPedia | NanoFEVER  | NanoFiQA2018 | NanoHotpotQA | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
|:----------------------|:------------|:-------------|:-----------|:-----------------|:------------|:-----------|:-------------|:-------------|:-------------------|:------------|:------------|:------------|:---------------|
| dot_accuracy@1        | 0.4         | 0.44         | 0.52       | 0.32             | 0.74        | 0.8        | 0.42         | 0.88         | 0.9                | 0.42        | 0.14        | 0.54        | 0.7347         |
| dot_accuracy@3        | 0.62        | 0.6          | 0.74       | 0.52             | 0.86        | 0.92       | 0.52         | 0.94         | 1.0                | 0.56        | 0.42        | 0.66        | 0.9184         |
| dot_accuracy@5        | 0.68        | 0.64         | 0.78       | 0.54             | 0.9         | 0.94       | 0.58         | 0.96         | 1.0                | 0.74        | 0.58        | 0.74        | 0.9592         |
| dot_accuracy@10       | 0.84        | 0.68         | 0.84       | 0.62             | 0.94        | 0.96       | 0.68         | 0.96         | 1.0                | 0.78        | 0.7         | 0.82        | 0.9592         |
| dot_precision@1       | 0.4         | 0.44         | 0.52       | 0.32             | 0.74        | 0.8        | 0.42         | 0.88         | 0.9                | 0.42        | 0.14        | 0.54        | 0.7347         |
| dot_precision@3       | 0.2067      | 0.34         | 0.2533     | 0.2              | 0.6133      | 0.32       | 0.2133       | 0.5133       | 0.3867             | 0.28        | 0.14        | 0.24        | 0.6259         |
| dot_precision@5       | 0.136       | 0.316        | 0.16       | 0.14             | 0.588       | 0.204      | 0.168        | 0.34         | 0.248              | 0.252       | 0.116       | 0.168       | 0.5673         |
| dot_precision@10      | 0.084       | 0.27         | 0.09       | 0.082            | 0.508       | 0.106      | 0.11         | 0.172        | 0.13               | 0.154       | 0.07        | 0.092       | 0.4612         |
| dot_recall@1          | 0.4         | 0.0631       | 0.48       | 0.165            | 0.0764      | 0.7567     | 0.2361       | 0.44         | 0.8073             | 0.0877      | 0.14        | 0.52        | 0.0527         |
| dot_recall@3          | 0.62        | 0.099        | 0.69       | 0.26             | 0.18        | 0.8867     | 0.3181       | 0.77         | 0.938              | 0.1727      | 0.42        | 0.65        | 0.1338         |
| dot_recall@5          | 0.68        | 0.1169       | 0.73       | 0.2873           | 0.2374      | 0.92       | 0.3795       | 0.85         | 0.9653             | 0.2577      | 0.58        | 0.74        | 0.1941         |
| dot_recall@10         | 0.84        | 0.1468       | 0.8        | 0.3223           | 0.3398      | 0.95       | 0.4829       | 0.86         | 0.98               | 0.3157      | 0.7         | 0.81        | 0.3072         |
| **dot_ndcg@10**       | **0.6077**  | **0.3452**   | **0.6595** | **0.3037**       | **0.6228**  | **0.8719** | **0.4125**   | **0.826**    | **0.9411**         | **0.3183**  | **0.4095**  | **0.669**   | **0.5361**     |
| dot_mrr@10            | 0.5353      | 0.5258       | 0.6369     | 0.4207           | 0.8137      | 0.8608     | 0.4934       | 0.9117       | 0.9467             | 0.5297      | 0.3175      | 0.624       | 0.8255         |
| dot_map@100           | 0.5419      | 0.1699       | 0.6105     | 0.2558           | 0.483       | 0.8427     | 0.3564       | 0.7724       | 0.9183             | 0.2456      | 0.3293      | 0.6279      | 0.3996         |
| query_active_dims     | 54.12       | 51.7         | 53.34      | 135.3            | 52.26       | 79.14      | 54.04        | 68.36        | 57.5               | 73.3        | 281.16      | 109.4       | 56.6122        |
| query_sparsity_ratio  | 0.9982      | 0.9983       | 0.9983     | 0.9956           | 0.9983      | 0.9974     | 0.9982       | 0.9978       | 0.9981             | 0.9976      | 0.9908      | 0.9964      | 0.9981         |
| corpus_active_dims    | 187.6754    | 336.3248     | 223.5909   | 270.1291         | 219.799     | 287.1962   | 213.8799     | 223.8652     | 58.3902            | 293.6072    | 268.115     | 348.518     | 224.871        |
| corpus_sparsity_ratio | 0.9939      | 0.989        | 0.9927     | 0.9911           | 0.9928      | 0.9906     | 0.993        | 0.9927       | 0.9981             | 0.9904      | 0.9912      | 0.9886      | 0.9926         |

#### Sparse Nano BEIR

* Dataset: `NanoBEIR_mean`
* Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
  ```json
  {
      "dataset_names": [
          "msmarco",
          "nfcorpus",
          "nq"
      ]
  }
  ```

| Metric                | Value      |
|:----------------------|:-----------|
| dot_accuracy@1        | 0.4533     |
| dot_accuracy@3        | 0.6533     |
| dot_accuracy@5        | 0.7        |
| dot_accuracy@10       | 0.7867     |
| dot_precision@1       | 0.4533     |
| dot_precision@3       | 0.2667     |
| dot_precision@5       | 0.204      |
| dot_precision@10      | 0.148      |
| dot_recall@1          | 0.3144     |
| dot_recall@3          | 0.4697     |
| dot_recall@5          | 0.509      |
| dot_recall@10         | 0.5956     |
| **dot_ndcg@10**       | **0.5375** |
| dot_mrr@10            | 0.566      |
| dot_map@100           | 0.4408     |
| query_active_dims     | 53.0533    |
| query_sparsity_ratio  | 0.9983     |
| corpus_active_dims    | 235.2386   |
| corpus_sparsity_ratio | 0.9923     |

#### Sparse Nano BEIR

* Dataset: `NanoBEIR_mean`
* Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
  ```json
  {
      "dataset_names": [
          "climatefever",
          "dbpedia",
          "fever",
          "fiqa2018",
          "hotpotqa",
          "msmarco",
          "nfcorpus",
          "nq",
          "quoraretrieval",
          "scidocs",
          "arguana",
          "scifact",
          "touche2020"
      ]
  }
  ```

| Metric                | Value      |
|:----------------------|:-----------|
| dot_accuracy@1        | 0.5581     |
| dot_accuracy@3        | 0.7137     |
| dot_accuracy@5        | 0.7722     |
| dot_accuracy@10       | 0.8292     |
| dot_precision@1       | 0.5581     |
| dot_precision@3       | 0.3333     |
| dot_precision@5       | 0.2618     |
| dot_precision@10      | 0.1792     |
| dot_recall@1          | 0.325      |
| dot_recall@3          | 0.4722     |
| dot_recall@5          | 0.5337     |
| dot_recall@10         | 0.6042     |
| **dot_ndcg@10**       | **0.5787** |
| dot_mrr@10            | 0.6494     |
| dot_map@100           | 0.5041     |
| query_active_dims     | 86.6795    |
| query_sparsity_ratio  | 0.9972     |
| corpus_active_dims    | 230.5676   |
| corpus_sparsity_ratio | 0.9924     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### msmarco

* Dataset: [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco) at [9e329ed](https://huggingface.co/datasets/sentence-transformers/msmarco/tree/9e329ed2e649c9d37b0d91dd6b764ff6fe671d83)
* Size: 90,000 training samples
* Columns: <code>score</code>, <code>query</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | score                                                               | query                                                                            | positive                                                                            | negative                                                                            |
  |:--------|:--------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | float                                                               | string                                                                           | string                                                                              | string                                                                              |
  | details | <ul><li>min: -3.66</li><li>mean: 12.97</li><li>max: 22.48</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 8.89 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 80.61 tokens</li><li>max: 256 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 78.92 tokens</li><li>max: 250 tokens</li></ul> |
* Samples:
  | score                           | query                                                                               | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | negative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
  |:--------------------------------|:------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>2.1688317457834883</code> | <code>what is ast test used for</code>                                              | <code>The AST test is commonly used to check for liver diseases. It is usually measured together with alanine aminotransferase (ALT). The AST to ALT ratio can help your doctor diagnose liver disease. Symptoms of liver disease that may cause your doctor to order an AST test include: 1  fatigue. 2  weakness.3  loss of appetite.t is usually measured together with alanine aminotransferase (ALT). The AST to ALT ratio can help your doctor diagnose liver disease. Symptoms of liver disease that may cause your doctor to order an AST test include: 1  fatigue. 2  weakness. 3  loss of appetite.</code> | <code>An aspartate aminotransferase (AST) test measures the amount of this enzyme in the blood. AST is normally found in red blood cells, liver, heart, muscle tissue, pancreas, and kidneys. AST formerly was called serum glutamic oxaloacetic transaminase (SGOT).he amount of AST in the blood is directly related to the extent of the tissue damage. After severe damage, AST levels rise in 6 to 10 hours and remain high for about 4 days. The AST test may be done at the same time as a test for alanine aminotransferase, or ALT.</code>                                                                                    |
  | <code>12.405409197012585</code> | <code>what does the suspensory ligament do when the cillary muscles contract</code> | <code>Suspensory Ligaments of the Ciliary Body: The suspensory ligaments of the ciliary body are ligaments that attach the ciliary body to the lens of the eye. Suspensory ligaments enable the ciliary body to change the shape of the lens as needed to focus light reflected from objects at different distances from the eye.</code>                                                                                                                                                                                                                                                                             | <code>Ossification of the posterior longitudinal ligament of the spine: Introduction. Ossification of the posterior longitudinal ligament of the spine: Abnormal calcification of a spinal ligament. The progressive calcification can starts within months of birth and affects the ability to move arms and legs.ssification of the posterior longitudinal ligament of the spine: Introduction. Ossification of the posterior longitudinal ligament of the spine: Abnormal calcification of a spinal ligament. The progressive calcification can starts within months of birth and affects the ability to move arms and legs.</code> |
  | <code>19.407212177912392</code> | <code>how many kids does trump have</code>                                          | <code>Donald Trump has 5 children: Donald Jr., Eric, and Ivanka- mother Ivana Trump Tiffany -mother Marla Maples Barron-mother Malania Trump Donald Trump Jr. has 2 children: … Kai Madison Trump and Donald Trump III.</code>                                                                                                                                                                                                                                                                                                                                                                                     | <code>Copyright © 2018, Trump Make America Great Again Committee. Paid for by Trump Make America Great Again Committee, a joint fundraising committee authorized by and composed of Donald J. Trump for President, Inc. and the Republican National Committee. x Close</code>                                                                                                                                                                                                                                                                                                                                                         |
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
  ```json
  {
      "loss": "SparseMarginMSELoss",
      "lambda_corpus": 0.08,
      "lambda_query": 0.1
  }
  ```

### Evaluation Dataset

#### msmarco

* Dataset: [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco) at [9e329ed](https://huggingface.co/datasets/sentence-transformers/msmarco/tree/9e329ed2e649c9d37b0d91dd6b764ff6fe671d83)
* Size: 10,000 evaluation samples
* Columns: <code>score</code>, <code>query</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | score                                                               | query                                                                            | positive                                                                            | negative                                                                            |
  |:--------|:--------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | float                                                               | string                                                                           | string                                                                              | string                                                                              |
  | details | <ul><li>min: -4.07</li><li>mean: 13.12</li><li>max: 22.25</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 8.96 tokens</li><li>max: 33 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 80.54 tokens</li><li>max: 220 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 78.41 tokens</li><li>max: 242 tokens</li></ul> |
* Samples:
  | score                           | query                                            | positive                                                                                                                                                                                                                                                                                                                                                                                                                      | negative                                                                                                                                                                                                                                                                                                                                 |
  |:--------------------------------|:-------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>11.227776050567627</code> | <code>tabernacle definition</code>               | <code>Wiktionary(0.00 / 0 votes)Rate this definition: tabernacle(Noun) any temporary dwelling, a hut, tent, booth. tabernacle(Noun) (Old Testament) The portable tent used before the construction of the temple, where the shekinah (presence of God) was believed to dwell. 1611 ... So Moses finished the work. Then a cloud covered the tent of the congregation, and the glory of the LORD filled the tabernacle.</code> | <code>Both the Annunciation tabernacle in Santa Croce and the Cantoria (the singer's pulpit) in the Duomo (now in the Museo dell'Opera del Duomo) show a vastly increased repertory of forms derived from ancient art, the harvest of Donatello's long stay in Rome (1430-33).</code>                                                    |
  | <code>12.354041655858357</code> | <code>what scientist discovered radiation</code> | <code>Becquerel used an apparatus similar to that displayed below to show that the radiation he discovered could not be x-rays. X-rays are neutral and cannot be bent in a magnetic field. The new radiation was bent by the magnetic field so that the radiation must be charged and different than x-rays.</code>                                                                                                           | <code>5a-Hydroxy Laxogenin. 5a-Hydroxy Laxogenin was discovered by a American scientist in 1996. It was shown to possess an anabolic/androgenic ratio similar to one of the most efficient anabolic substances, in particular Anavar but without the side effects of liver toxicity or testing positive for steroidal therapy.</code>    |
  | <code>11.721514344215393</code> | <code>are horses primates</code>                 | <code>Primates still do, but many, if not most, mammals do not. Horses, deer, cows and many other mammals have a reduced number of digits on their forelimbs and hindlimbs. Primates also retain other generalized skeletal features like the clavicle or collar bone.</code>                                                                                                                                                 | <code>The only primates that live in Canada are humans. The species originated in east Africa and is unrelated to South American primates. Humans first arrived in large numbers to Canada around 15,000 years ago from North Asia, and surged in migration starting 400 years ago from around the world, especially from Europe.</code> |
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
  ```json
  {
      "loss": "SparseMarginMSELoss",
      "lambda_corpus": 0.08,
      "lambda_query": 0.1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `bf16`: True
- `load_best_model_at_end`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}

</details>

### Training Logs
| Epoch      | Step     | Training Loss | Validation Loss | NanoMSMARCO_dot_ndcg@10 | NanoNFCorpus_dot_ndcg@10 | NanoNQ_dot_ndcg@10 | NanoBEIR_mean_dot_ndcg@10 | NanoClimateFEVER_dot_ndcg@10 | NanoDBPedia_dot_ndcg@10 | NanoFEVER_dot_ndcg@10 | NanoFiQA2018_dot_ndcg@10 | NanoHotpotQA_dot_ndcg@10 | NanoQuoraRetrieval_dot_ndcg@10 | NanoSCIDOCS_dot_ndcg@10 | NanoArguAna_dot_ndcg@10 | NanoSciFact_dot_ndcg@10 | NanoTouche2020_dot_ndcg@10 |
|:----------:|:--------:|:-------------:|:---------------:|:-----------------------:|:------------------------:|:------------------:|:-------------------------:|:----------------------------:|:-----------------------:|:---------------------:|:------------------------:|:------------------------:|:------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:--------------------------:|
| 0.0178     | 100      | 664548.88     | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.0356     | 200      | 1912.7461     | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.0533     | 300      | 89.4823       | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.0711     | 400      | 57.4213       | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.0889     | 500      | 43.5322       | 37.8169         | 0.5271                  | 0.2411                   | 0.5761             | 0.4481                    | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.1067     | 600      | 38.8042       | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.1244     | 700      | 34.1112       | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.1422     | 800      | 30.3487       | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.16       | 900      | 30.4368       | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.1778     | 1000     | 30.9444       | 27.4550         | 0.5513                  | 0.3375                   | 0.6122             | 0.5003                    | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.1956     | 1100     | 27.7082       | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.2133     | 1200     | 28.6251       | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.2311     | 1300     | 27.6298       | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.2489     | 1400     | 24.1523       | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.2667     | 1500     | 25.3053       | 23.4952         | 0.5898                  | 0.3416                   | 0.6296             | 0.5203                    | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.2844     | 1600     | 24.8645       | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.3022     | 1700     | 25.9037       | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.32       | 1800     | 25.255        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.3378     | 1900     | 24.4475       | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.3556     | 2000     | 22.8183       | 26.7798         | 0.5579                  | 0.3407                   | 0.6160             | 0.5049                    | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.3733     | 2100     | 22.0948       | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.3911     | 2200     | 22.9483       | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.4089     | 2300     | 20.8408       | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.4267     | 2400     | 19.5543       | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.4444     | 2500     | 20.9379       | 18.6976         | 0.6327                  | 0.3216                   | 0.6255             | 0.5266                    | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.4622     | 2600     | 20.2078       | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.48       | 2700     | 20.6449       | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.4978     | 2800     | 19.1764       | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.5156     | 2900     | 19.4603       | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.5333     | 3000     | 20.3068       | 18.4043         | 0.6081                  | 0.3220                   | 0.6515             | 0.5272                    | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.5511     | 3100     | 19.1402       | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.5689     | 3200     | 18.0542       | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.5867     | 3300     | 17.9658       | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.6044     | 3400     | 18.4345       | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.6222     | 3500     | 19.4609       | 17.0769         | 0.6155                  | 0.3219                   | 0.6545             | 0.5306                    | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.64       | 3600     | 17.4228       | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.6578     | 3700     | 17.8939       | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.6756     | 3800     | 16.2358       | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.6933     | 3900     | 16.6908       | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.7111     | 4000     | 15.9995       | 17.7298         | 0.6022                  | 0.3555                   | 0.6525             | 0.5367                    | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.7289     | 4100     | 16.3495       | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.7467     | 4200     | 15.559        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.7644     | 4300     | 17.4544       | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.7822     | 4400     | 15.8666       | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.8        | 4500     | 16.3616       | 18.8307         | 0.6036                  | 0.3472                   | 0.6112             | 0.5207                    | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.8178     | 4600     | 15.276        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.8356     | 4700     | 15.2697       | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.8533     | 4800     | 16.6727       | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.8711     | 4900     | 15.2223       | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.8889     | 5000     | 15.7583       | 16.2949         | 0.6177                  | 0.3438                   | 0.6505             | 0.5373                    | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.9067     | 5100     | 15.3164       | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.9244     | 5200     | 14.9429       | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.9422     | 5300     | 15.5992       | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.96       | 5400     | 14.8593       | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| **0.9778** | **5500** | **14.7565**   | **16.423**      | **0.6077**              | **0.3452**               | **0.6595**         | **0.5375**                | **-**                        | **-**                   | **-**                 | **-**                    | **-**                    | **-**                          | **-**                   | **-**                   | **-**                   | **-**                      |
| 0.9956     | 5600     | 14.5115       | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| -1         | -1       | -             | -               | 0.6077                  | 0.3452                   | 0.6595             | 0.5787                    | 0.3037                       | 0.6228                  | 0.8719                | 0.4125                   | 0.8260                   | 0.9411                         | 0.3183                  | 0.4095                  | 0.6690                  | 0.5361                     |

* The bold row denotes the saved checkpoint.

### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Energy Consumed**: 0.093 kWh
- **Carbon Emitted**: 0.034 kg of CO2
- **Hours Used**: 0.305 hours

### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA H100 80GB HBM3
- **CPU Model**: AMD EPYC 7R13 Processor
- **RAM Size**: 248.00 GB

### Framework Versions
- Python: 3.13.3
- Sentence Transformers: 4.2.0.dev0
- Transformers: 4.51.3
- PyTorch: 2.7.1+cu126
- Accelerate: 0.26.0
- Datasets: 2.21.0
- Tokenizers: 0.21.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### SpladeLoss
```bibtex
@misc{formal2022distillationhardnegativesampling,
      title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
      author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
      year={2022},
      eprint={2205.04733},
      archivePrefix={arXiv},
      primaryClass={cs.IR},
      url={https://arxiv.org/abs/2205.04733},
}
```

#### SparseMarginMSELoss
```bibtex
@misc{hofstätter2021improving,
    title={Improving Efficient Neural Ranking Models with Cross-Architecture Knowledge Distillation},
    author={Sebastian Hofstätter and Sophia Althammer and Michael Schröder and Mete Sertkan and Allan Hanbury},
    year={2021},
    eprint={2010.02666},
    archivePrefix={arXiv},
    primaryClass={cs.IR}
}
```

#### FlopsLoss
```bibtex
@article{paria2020minimizing,
    title={Minimizing flops to learn efficient sparse representations},
    author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
    journal={arXiv preprint arXiv:2004.05665},
    year={2020}
    }
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->