spasis commited on
Commit
2f315c3
·
1 Parent(s): 49a3609

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 278.67 +/- 18.28
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x788288aabc70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x788288aabd00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x788288aabd90>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x788288aabe20>", "_build": "<function ActorCriticPolicy._build at 0x788288aabeb0>", "forward": "<function ActorCriticPolicy.forward at 0x788288aabf40>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x788288ab0040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x788288ab00d0>", "_predict": "<function ActorCriticPolicy._predict at 0x788288ab0160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x788288ab01f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x788288ab0280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x788288ab0310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7882906369c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1704634105147948813, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAEDM4L1u7EA/zR9+vf4q7r49bAW+khHnPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV9QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHI0ScXm/36MAWyUS/aMAXSUR0CwdLj1K5CodX2UKGgGR0BvbYmXw9aEaAdLzmgIR0CwdRA8r7O3dX2UKGgGR0BxJaois4kvaAdL5mgIR0CwdWu1F6RhdX2UKGgGR0BysYaQ3gk1aAdL3GgIR0Cwdhs0DU3GdX2UKGgGR0By4pcX3xnWaAdL2GgIR0CwdnIZydWidX2UKGgGR0BvZcLlV94NaAdL3mgIR0CwdstTP0I1dX2UKGgGR0Bxo/vd/J/5aAdL7GgIR0Cwdy/jsD4hdX2UKGgGR0ByIkiyIHkcaAdLy2gIR0Cwd9Al4TsZdX2UKGgGR0ByDSDFqBVdaAdNLwFoCEdAsHhLTUiIL3V9lChoBkdAb9m+u/1xsGgHS+doCEdAsHilygf2b3V9lChoBkdAcHfCngpBomgHS+RoCEdAsHkEA6uGK3V9lChoBkdAcSGmA9V3lmgHS85oCEdAsHlV7v5P/XV9lChoBkdAcYeWsijcmGgHS+ZoCEdAsHoG4qgAZXV9lChoBkdAcJ8CvX9R8GgHS+5oCEdAsHpk67ulXXV9lChoBkdAcbNjPOY6XGgHS+1oCEdAsHrEDPnjhnV9lChoBkdAce4I4lyBCmgHS+5oCEdAsHsnNnoPkXV9lChoBkdAb7Vd+G47R2gHS/poCEdAsHvc9V3ljnV9lChoBkdAUYAhzNliB2gHS5xoCEdAsHwcq6OHWXV9lChoBkdAcEf3sXzlLmgHS+doCEdAsHx5fReC1HV9lChoBkdAcKgAhStNjGgHS+doCEdAsHzYDSw4bXV9lChoBkdAUq1O32EkB2gHS6FoCEdAsH0axxDLKXV9lChoBkdAcUQ7ihnJ1mgHS/doCEdAsH4NfE4vOHV9lChoBkdAcT1rbQC0W2gHS/FoCEdAsH6HG96C2HV9lChoBkdAcb/dIGyHEmgHS+JoCEdAsH77YL9deXV9lChoBkdAcddO1fE4vWgHS8poCEdAsH9nP2PDHnV9lChoBkdAcRv4n4O+ZmgHS8ZoCEdAsH/TGLk0anV9lChoBkdAcebk3CKrJmgHS9poCEdAsICp/rjYI3V9lChoBkdARQN8eCCjDmgHS4BoCEdAsIDfjxTbWXV9lChoBkdAcMguanaWX2gHS9VoCEdAsIE5of0VanV9lChoBkdAcDEGC7K7qmgHS9loCEdAsIGQxL0z03V9lChoBkdAcWhZML4N7WgHS+ZoCEdAsIHwFQl8gXV9lChoBkdAZtXyNGViWmgHTegDaAhHQLCD4tp22Xt1fZQoaAZHQGWB1PN3W4FoB03oA2gIR0CwhddGy5ZsdX2UKGgGR0BzjjfWMCLdaAdL9GgIR0CwhpN/rjYJdX2UKGgGR0Byzm59Vmz0aAdL8WgIR0Cwhvo8U21ldX2UKGgGR0BvcWKMvRJFaAdNMgFoCEdAsId4+otL+XV9lChoBkdAUb0mXw9aEGgHS6BoCEdAsIe46Mir1nV9lChoBkdAcc4hK15SnGgHTQ4BaAhHQLCIf3hGYrt1fZQoaAZHQHI1efdyksVoB0v+aAhHQLCI64rjHXF1fZQoaAZHQHFiaZYxL01oB0vYaAhHQLCJROkLx7R1fZQoaAZHQG6IWJaaCtloB0vIaAhHQLCJmHim2st1fZQoaAZHQHEKJiy6cy5oB00EAWgIR0CwilVcpsoEdX2UKGgGR0BxMy5NGmUGaAdL9mgIR0Cwit1feDWcdX2UKGgGR0Bx9zXAdn01aAdL0GgIR0Cwi0o/mknDdX2UKGgGR0ByVaSW7e2vaAdNHAFoCEdAsIvgH9m6G3V9lChoBkdAbvjy/bj942gHTQMBaAhHQLCMaFBY3eh1fZQoaAZHQHLM0/r0J4VoB0v+aAhHQLCNWgAp8Wt1fZQoaAZHQHA3Usz2vjhoB0vZaAhHQLCNxsoUi6h1fZQoaAZHQHCa+PFNtZVoB0vEaAhHQLCOGZvUBn11fZQoaAZHQHFuc4DLbHpoB0vXaAhHQLCObvWpZOl1fZQoaAZHQHD+r+tKZlZoB0vZaAhHQLCPHQswtap1fZQoaAZHQHIwIw22oehoB00GAWgIR0Cwj4Lrs0HhdX2UKGgGR0BlmEL4N7SiaAdN6ANoCEdAsJFrQkX1rnV9lChoBkdAb2s/WUbDM2gHS8loCEdAsJG+YE4ecXV9lChoBkdAcDe9ETg2qGgHS9RoCEdAsJIWc7Qsw3V9lChoBkdAb3lFPznRs2gHS+JoCEdAsJJx8NQTEnV9lChoBkdAcNMeAd4mkWgHTQ8BaAhHQLCTMfwqiGp1fZQoaAZHQHKSGqtHQQdoB0vXaAhHQLCTiE3sHB11fZQoaAZHQHGd0vGp++doB0vcaAhHQLCT5k/KQq91fZQoaAZHQHGoPbfxc3VoB00MAWgIR0CwlFYk7fYSdX2UKGgGR0BwzYgIQe3haAdLxWgIR0CwlPtWEK3NdX2UKGgGR0ByHa4jKPn0aAdLwWgIR0CwlU2fwqiHdX2UKGgGR0BQcmQr+YMOaAdLqWgIR0CwlY/bGm1qdX2UKGgGR0BxeEgEEC/5aAdL5WgIR0Cwle/oaDPGdX2UKGgGR0BwqD9wWFewaAdL72gIR0Cwlk+QIUrTdX2UKGgGR0Bzb+0x/NJOaAdNCgFoCEdAsJcJagVXWHV9lChoBkdAcIhMW43FUGgHS9VoCEdAsJdeeUY8+3V9lChoBkdAc3JZ88cMmWgHTQwBaAhHQLCX3uKGcnV1fZQoaAZHQHG2AFPi1iRoB0vaaAhHQLCYU1XeWOZ1fZQoaAZHQG3i779AHFBoB0vLaAhHQLCZJlRgqmV1fZQoaAZHQHHHHTI/7i1oB0vqaAhHQLCZn938n/l1fZQoaAZHQG0Jpqynk1doB0vZaAhHQLCaFE5Qxet1fZQoaAZHQG5PHMlkYoBoB0v4aAhHQLCanIq9XcR1fZQoaAZHQHG6wVCXyAhoB0vIaAhHQLCa/dBSk0t1fZQoaAZHQGP6mR/3FkxoB03oA2gIR0CwnPs6q815dX2UKGgGR0BzNxD+irT6aAdL3WgIR0CwnafW1+iKdX2UKGgGR0BxGqLR8c+8aAdNCwFoCEdAsJ4a3LFGX3V9lChoBkdAcZAEJjUd72gHS8NoCEdAsJ5ofhddFHV9lChoBkdAbegYMvysjmgHS/BoCEdAsJ7Ig9vCM3V9lChoBkdAcLyVghKUV2gHS95oCEdAsJ8jeGfwqnV9lChoBkdAciXuPmxMWWgHS+loCEdAsJ/Z9QXQ+nV9lChoBkdAcmtrPMSsbWgHTR8BaAhHQLCgU6E8JUp1fZQoaAZHQHGk0MkQf6poB0vEaAhHQLCgoeMQ2/B1fZQoaAZHQHKUWVE/jbVoB0vyaAhHQLChBb3Gn4x1fZQoaAZHQHNcwXZXdTJoB00KAWgIR0CwocgyqMm4dX2UKGgGR0By7Qjnmq5taAdL92gIR0CwoixOgxrSdX2UKGgGR0BxT+EFnqVyaAdL1mgIR0CwooGt2cJ/dX2UKGgGR0BuarIo3JgcaAdL/mgIR0Cwouf4qPOqdX2UKGgGR0BzVCOjqOcUaAdL2GgIR0Cwo5OKKpDNdX2UKGgGR0BzH6vmozeoaAdL+WgIR0Cwo/uzMRpUdX2UKGgGR0BxEqWqtHQQaAdLzmgIR0CwpFGpVCHAdX2UKGgGR0BxR4LDye7MaAdL42gIR0CwpKwnUlRhdX2UKGgGR0Bw3GdkJ8fFaAdNIwFoCEdAsKWsKeCkGnV9lChoBkdAcbarHU+cIGgHS/5oCEdAsKYuTlkpZ3V9lChoBkdAcBGrQgLZz2gHS8toCEdAsKaYXSBsh3V9lChoBkdAcW5uqFRHgGgHS9loCEdAsKcGPmxMWXV9lChoBkdAcheBFuvU0GgHTQEBaAhHQLCniknTiKl1fZQoaAZHQHHNfznRsuZoB0vuaAhHQLCoWx95Qgt1fZQoaAZHQHByHbRF7UpoB0v0aAhHQLCovmdy1eB1fZQoaAZHQHG7tuUD+zdoB00NAmgIR0CwqZOdsi0OdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 7816, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f6c112a2bcde81be28b91ce5fcc3f9d9d0540164ea3a22a9d06cf71e3b027d0
3
+ size 147306
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x788288aabc70>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x788288aabd00>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x788288aabd90>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x788288aabe20>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x788288aabeb0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x788288aabf40>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x788288ab0040>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x788288ab00d0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x788288ab0160>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x788288ab01f0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x788288ab0280>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x788288ab0310>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7882906369c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1000448,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1704634105147948813,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAEDM4L1u7EA/zR9+vf4q7r49bAW+khHnPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.00044800000000000395,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV9QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHI0ScXm/36MAWyUS/aMAXSUR0CwdLj1K5CodX2UKGgGR0BvbYmXw9aEaAdLzmgIR0CwdRA8r7O3dX2UKGgGR0BxJaois4kvaAdL5mgIR0CwdWu1F6RhdX2UKGgGR0BysYaQ3gk1aAdL3GgIR0Cwdhs0DU3GdX2UKGgGR0By4pcX3xnWaAdL2GgIR0CwdnIZydWidX2UKGgGR0BvZcLlV94NaAdL3mgIR0CwdstTP0I1dX2UKGgGR0Bxo/vd/J/5aAdL7GgIR0Cwdy/jsD4hdX2UKGgGR0ByIkiyIHkcaAdLy2gIR0Cwd9Al4TsZdX2UKGgGR0ByDSDFqBVdaAdNLwFoCEdAsHhLTUiIL3V9lChoBkdAb9m+u/1xsGgHS+doCEdAsHilygf2b3V9lChoBkdAcHfCngpBomgHS+RoCEdAsHkEA6uGK3V9lChoBkdAcSGmA9V3lmgHS85oCEdAsHlV7v5P/XV9lChoBkdAcYeWsijcmGgHS+ZoCEdAsHoG4qgAZXV9lChoBkdAcJ8CvX9R8GgHS+5oCEdAsHpk67ulXXV9lChoBkdAcbNjPOY6XGgHS+1oCEdAsHrEDPnjhnV9lChoBkdAce4I4lyBCmgHS+5oCEdAsHsnNnoPkXV9lChoBkdAb7Vd+G47R2gHS/poCEdAsHvc9V3ljnV9lChoBkdAUYAhzNliB2gHS5xoCEdAsHwcq6OHWXV9lChoBkdAcEf3sXzlLmgHS+doCEdAsHx5fReC1HV9lChoBkdAcKgAhStNjGgHS+doCEdAsHzYDSw4bXV9lChoBkdAUq1O32EkB2gHS6FoCEdAsH0axxDLKXV9lChoBkdAcUQ7ihnJ1mgHS/doCEdAsH4NfE4vOHV9lChoBkdAcT1rbQC0W2gHS/FoCEdAsH6HG96C2HV9lChoBkdAcb/dIGyHEmgHS+JoCEdAsH77YL9deXV9lChoBkdAcddO1fE4vWgHS8poCEdAsH9nP2PDHnV9lChoBkdAcRv4n4O+ZmgHS8ZoCEdAsH/TGLk0anV9lChoBkdAcebk3CKrJmgHS9poCEdAsICp/rjYI3V9lChoBkdARQN8eCCjDmgHS4BoCEdAsIDfjxTbWXV9lChoBkdAcMguanaWX2gHS9VoCEdAsIE5of0VanV9lChoBkdAcDEGC7K7qmgHS9loCEdAsIGQxL0z03V9lChoBkdAcWhZML4N7WgHS+ZoCEdAsIHwFQl8gXV9lChoBkdAZtXyNGViWmgHTegDaAhHQLCD4tp22Xt1fZQoaAZHQGWB1PN3W4FoB03oA2gIR0CwhddGy5ZsdX2UKGgGR0BzjjfWMCLdaAdL9GgIR0CwhpN/rjYJdX2UKGgGR0Byzm59Vmz0aAdL8WgIR0Cwhvo8U21ldX2UKGgGR0BvcWKMvRJFaAdNMgFoCEdAsId4+otL+XV9lChoBkdAUb0mXw9aEGgHS6BoCEdAsIe46Mir1nV9lChoBkdAcc4hK15SnGgHTQ4BaAhHQLCIf3hGYrt1fZQoaAZHQHI1efdyksVoB0v+aAhHQLCI64rjHXF1fZQoaAZHQHFiaZYxL01oB0vYaAhHQLCJROkLx7R1fZQoaAZHQG6IWJaaCtloB0vIaAhHQLCJmHim2st1fZQoaAZHQHEKJiy6cy5oB00EAWgIR0CwilVcpsoEdX2UKGgGR0BxMy5NGmUGaAdL9mgIR0Cwit1feDWcdX2UKGgGR0Bx9zXAdn01aAdL0GgIR0Cwi0o/mknDdX2UKGgGR0ByVaSW7e2vaAdNHAFoCEdAsIvgH9m6G3V9lChoBkdAbvjy/bj942gHTQMBaAhHQLCMaFBY3eh1fZQoaAZHQHLM0/r0J4VoB0v+aAhHQLCNWgAp8Wt1fZQoaAZHQHA3Usz2vjhoB0vZaAhHQLCNxsoUi6h1fZQoaAZHQHCa+PFNtZVoB0vEaAhHQLCOGZvUBn11fZQoaAZHQHFuc4DLbHpoB0vXaAhHQLCObvWpZOl1fZQoaAZHQHD+r+tKZlZoB0vZaAhHQLCPHQswtap1fZQoaAZHQHIwIw22oehoB00GAWgIR0Cwj4Lrs0HhdX2UKGgGR0BlmEL4N7SiaAdN6ANoCEdAsJFrQkX1rnV9lChoBkdAb2s/WUbDM2gHS8loCEdAsJG+YE4ecXV9lChoBkdAcDe9ETg2qGgHS9RoCEdAsJIWc7Qsw3V9lChoBkdAb3lFPznRs2gHS+JoCEdAsJJx8NQTEnV9lChoBkdAcNMeAd4mkWgHTQ8BaAhHQLCTMfwqiGp1fZQoaAZHQHKSGqtHQQdoB0vXaAhHQLCTiE3sHB11fZQoaAZHQHGd0vGp++doB0vcaAhHQLCT5k/KQq91fZQoaAZHQHGoPbfxc3VoB00MAWgIR0CwlFYk7fYSdX2UKGgGR0BwzYgIQe3haAdLxWgIR0CwlPtWEK3NdX2UKGgGR0ByHa4jKPn0aAdLwWgIR0CwlU2fwqiHdX2UKGgGR0BQcmQr+YMOaAdLqWgIR0CwlY/bGm1qdX2UKGgGR0BxeEgEEC/5aAdL5WgIR0Cwle/oaDPGdX2UKGgGR0BwqD9wWFewaAdL72gIR0Cwlk+QIUrTdX2UKGgGR0Bzb+0x/NJOaAdNCgFoCEdAsJcJagVXWHV9lChoBkdAcIhMW43FUGgHS9VoCEdAsJdeeUY8+3V9lChoBkdAc3JZ88cMmWgHTQwBaAhHQLCX3uKGcnV1fZQoaAZHQHG2AFPi1iRoB0vaaAhHQLCYU1XeWOZ1fZQoaAZHQG3i779AHFBoB0vLaAhHQLCZJlRgqmV1fZQoaAZHQHHHHTI/7i1oB0vqaAhHQLCZn938n/l1fZQoaAZHQG0Jpqynk1doB0vZaAhHQLCaFE5Qxet1fZQoaAZHQG5PHMlkYoBoB0v4aAhHQLCanIq9XcR1fZQoaAZHQHG6wVCXyAhoB0vIaAhHQLCa/dBSk0t1fZQoaAZHQGP6mR/3FkxoB03oA2gIR0CwnPs6q815dX2UKGgGR0BzNxD+irT6aAdL3WgIR0CwnafW1+iKdX2UKGgGR0BxGqLR8c+8aAdNCwFoCEdAsJ4a3LFGX3V9lChoBkdAcZAEJjUd72gHS8NoCEdAsJ5ofhddFHV9lChoBkdAbegYMvysjmgHS/BoCEdAsJ7Ig9vCM3V9lChoBkdAcLyVghKUV2gHS95oCEdAsJ8jeGfwqnV9lChoBkdAciXuPmxMWWgHS+loCEdAsJ/Z9QXQ+nV9lChoBkdAcmtrPMSsbWgHTR8BaAhHQLCgU6E8JUp1fZQoaAZHQHGk0MkQf6poB0vEaAhHQLCgoeMQ2/B1fZQoaAZHQHKUWVE/jbVoB0vyaAhHQLChBb3Gn4x1fZQoaAZHQHNcwXZXdTJoB00KAWgIR0CwocgyqMm4dX2UKGgGR0By7Qjnmq5taAdL92gIR0CwoixOgxrSdX2UKGgGR0BxT+EFnqVyaAdL1mgIR0CwooGt2cJ/dX2UKGgGR0BuarIo3JgcaAdL/mgIR0Cwouf4qPOqdX2UKGgGR0BzVCOjqOcUaAdL2GgIR0Cwo5OKKpDNdX2UKGgGR0BzH6vmozeoaAdL+WgIR0Cwo/uzMRpUdX2UKGgGR0BxEqWqtHQQaAdLzmgIR0CwpFGpVCHAdX2UKGgGR0BxR4LDye7MaAdL42gIR0CwpKwnUlRhdX2UKGgGR0Bw3GdkJ8fFaAdNIwFoCEdAsKWsKeCkGnV9lChoBkdAcbarHU+cIGgHS/5oCEdAsKYuTlkpZ3V9lChoBkdAcBGrQgLZz2gHS8toCEdAsKaYXSBsh3V9lChoBkdAcW5uqFRHgGgHS9loCEdAsKcGPmxMWXV9lChoBkdAcheBFuvU0GgHTQEBaAhHQLCniknTiKl1fZQoaAZHQHHNfznRsuZoB0vuaAhHQLCoWx95Qgt1fZQoaAZHQHByHbRF7UpoB0v0aAhHQLCovmdy1eB1fZQoaAZHQHG7tuUD+zdoB00NAmgIR0CwqZOdsi0OdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 7816,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 1,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9e515e0e1867de313121eaaf53a31ac42e92b135dd0ff66afc1a242bd12733d
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f0dfcd108d5942ff082c106a3f164d670676e1c9d34907b4a9153f186b10c03d
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (156 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 278.67139770000006, "std_reward": 18.2774140923561, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-01-07T14:54:56.417115"}