Remek commited on
Commit
a370e25
1 Parent(s): d3fe3c3

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +101 -0
README.md ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - pl
4
+ license: apache-2.0
5
+ library_name: transformers
6
+ tags:
7
+ - finetuned
8
+ - gguf
9
+ - 8bit
10
+ inference: false
11
+ pipeline_tag: text-generation
12
+ base_model: speakleash/Bielik-11B-v2.1-Instruct
13
+ ---
14
+ <p align="center">
15
+ <img src="https://huggingface.co/speakleash/Bielik-7B-Instruct-v0.1-GGUF/raw/main/speakleash_cyfronet.png">
16
+ </p>
17
+
18
+ # Bielik-11B-v2.2-Instruct-FP8
19
+
20
+ This model was obtained by quantizing the weights and activations of [Bielik-11B-v.2.1-Instruct](https://huggingface.co/speakleash/Bielik-11B-v2.1-Instruct) to FP8 data type, ready for inference with vLLM >= 0.5.0 or SGLang.
21
+ AutoFP8 is used for quantization. This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%.
22
+ Only the weights and activations of the linear operators within transformers blocks are quantized. Symmetric per-tensor quantization is applied, in which a single linear scaling maps the FP8 representations of the quantized weights and activations.
23
+
24
+ FP8 compuation is supported on Nvidia GPUs with compute capability > 8.9 (Ada Lovelace, Hopper).
25
+
26
+ **DISCLAIMER: Be aware that quantised models show reduced response quality and possible hallucinations!**
27
+
28
+ ## Use with vLLM
29
+
30
+ This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
31
+
32
+ ```python
33
+ from vllm import LLM, SamplingParams
34
+ from transformers import AutoTokenizer
35
+
36
+ model_id = "speakleash/Bielik-11B-v2.1-Instruct-FP8"
37
+
38
+ sampling_params = SamplingParams(temperature=0.2, top_p=0.95, max_tokens=4096)
39
+
40
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
41
+
42
+ messages = [
43
+ {"role": "system", "content": "Jesteś pomocnym asystentem Bielik."},
44
+ {"role": "user", "content": "Kim był Mikołaj Kopernik i z czego zasłynął?"},
45
+ ]
46
+
47
+ prompts = tokenizer.apply_chat_template(messages, tokenize=False)
48
+
49
+ llm = LLM(model=model_id, max_model_len=4096)
50
+
51
+ outputs = llm.generate(prompts, sampling_params)
52
+
53
+ generated_text = outputs[0].outputs[0].text
54
+ print(generated_text)
55
+ ```
56
+
57
+ vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
58
+
59
+
60
+ ## Use with SGLang Runtime
61
+ Launch a server of SGLang Runtime:
62
+
63
+ ```
64
+ python -m sglang.launch_server --model-path speakleash/Bielik-11B-v2.1-Instruct-FP8 --port 30000
65
+ ```
66
+
67
+ Then you can send http request or use OpenAI Compatible API.
68
+
69
+ ```python
70
+ import openai
71
+ client = openai.Client(
72
+ base_url="http://127.0.0.1:30000/v1", api_key="EMPTY")
73
+
74
+ response = client.chat.completions.create(
75
+ model="default",
76
+ messages=[
77
+ {"role": "system", "content": "Jesteś pomocnym asystentem Bielik."},
78
+ {"role": "user", "content": "Kim był Mikołaj Kopernik i z czego zasłynął?"},
79
+ ],
80
+ temperature=0,
81
+ max_tokens=4096,
82
+ )
83
+ print(response)
84
+
85
+ ```
86
+
87
+ ### Model description:
88
+
89
+ * **Developed by:** [SpeakLeash](https://speakleash.org/) & [ACK Cyfronet AGH](https://www.cyfronet.pl/)
90
+ * **Language:** Polish
91
+ * **Model type:** causal decoder-only
92
+ * **Quant from:** [Bielik-11B-v2.1-Instruct](https://huggingface.co/speakleash/Bielik-11B-v2.1-Instruct)
93
+ * **Finetuned from:** [Bielik-11B-v2](https://huggingface.co/speakleash/Bielik-11B-v2)
94
+ * **License:** Apache 2.0 and [Terms of Use](https://bielik.ai/terms/)
95
+
96
+ ### Responsible for model quantization
97
+ * [Remigiusz Kinas](https://www.linkedin.com/in/remigiusz-kinas/)<sup>SpeakLeash</sup> - team leadership, conceptualizing, calibration data preparation, process creation and quantized model delivery.
98
+
99
+ ## Contact Us
100
+
101
+ If you have any questions or suggestions, please use the discussion tab. If you want to contact us directly, join our [Discord SpeakLeash](https://discord.gg/CPBxPce4).