File size: 1,824 Bytes
34f620b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-large-TIMIT-IPA2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-TIMIT-IPA2

This model is a fine-tuned version of [facebook/wav2vec2-large](https://huggingface.co/facebook/wav2vec2-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1531
- Per: 0.0638

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 100
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Per    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 2.0846        | 6.85  | 500  | 0.1810          | 0.0991 |
| 0.1857        | 13.7  | 1000 | 0.1411          | 0.0691 |
| 0.0948        | 20.55 | 1500 | 0.1345          | 0.0666 |
| 0.0646        | 27.4  | 2000 | 0.1444          | 0.0673 |
| 0.0502        | 34.25 | 2500 | 0.1436          | 0.0628 |
| 0.0381        | 41.1  | 3000 | 0.1383          | 0.0637 |
| 0.0309        | 47.95 | 3500 | 0.1533          | 0.0638 |
| 0.0261        | 54.79 | 4000 | 0.1531          | 0.0638 |


### Framework versions

- Transformers 4.20.0
- Pytorch 1.12.1+cu113
- Datasets 2.6.2.dev0
- Tokenizers 0.12.1