cemsubakan
commited on
Commit
·
ca690f1
1
Parent(s):
5ad3c07
simplified hyperparams.yaml and adding hyperparams_train.yaml
Browse files- hyperparams.yaml +2 -161
- hyperparams_training.yaml +234 -0
hyperparams.yaml
CHANGED
@@ -1,128 +1,17 @@
|
|
1 |
-
# Generated 2021-09-17 from:
|
2 |
-
# /home/mila/s/subakany/speechbrain_new/recipes/WSJ0Mix/separation/snrestimator_yamls/timedom_convnet_whamr_v2_stnorm_manyseparators.yaml
|
3 |
-
# yamllint disable
|
4 |
# ################################
|
5 |
-
# Model:
|
6 |
-
#
|
7 |
-
# Dataset : WSJ0-2mix and WSJ0-3mix
|
8 |
# ################################
|
9 |
-
#
|
10 |
-
# Basic parameters
|
11 |
-
# Seed needs to be set at top of yaml, before objects with parameters are made
|
12 |
-
#
|
13 |
-
seed: 1234
|
14 |
-
__set_seed: !apply:torch.manual_seed [1234]
|
15 |
|
16 |
-
# Data params
|
17 |
-
|
18 |
-
# e.g. '/yourpath/wsj0-mix/2speakers'
|
19 |
-
# end with 2speakers for wsj0-2mix or 3speakers for wsj0-3mix
|
20 |
-
data_folder: /miniscratch/subakany/LibriMixData_new/Libri2Mix/
|
21 |
-
|
22 |
-
# the path for wsj0/si_tr_s/ folder -- only needed if dynamic mixing is used
|
23 |
-
# e.g. /yourpath/wsj0-processed/si_tr_s/
|
24 |
-
# you need to convert the original wsj0 to 8k
|
25 |
-
# you can do this conversion with the script ../meta/preprocess_dynamic_mixing.py
|
26 |
-
base_folder_dm: /miniscratch/subakany/LibriMixData_new/LibriSpeech/train-clean-360_processed/
|
27 |
-
rir_path: /miniscratch/subakany/whamr_rirs_wav
|
28 |
-
|
29 |
-
experiment_name: snrtrain-timedomain-sbpooling-wwhamr-lessstride-stnorm-manyseparators
|
30 |
-
output_folder: results/snrtrain-timedomain-sbpooling-wwhamr-lessstride-stnorm-manyseparators/1234
|
31 |
-
train_log: results/snrtrain-timedomain-sbpooling-wwhamr-lessstride-stnorm-manyseparators/1234/train_log.txt
|
32 |
-
save_folder: results/snrtrain-timedomain-sbpooling-wwhamr-lessstride-stnorm-manyseparators/1234/save
|
33 |
-
train_data: results/snrtrain-timedomain-sbpooling-wwhamr-lessstride-stnorm-manyseparators/1234/save/libri2mix_train-360.csv
|
34 |
-
valid_data: results/snrtrain-timedomain-sbpooling-wwhamr-lessstride-stnorm-manyseparators/1234/save/libri2mix_dev.csv
|
35 |
-
test_data: results/snrtrain-timedomain-sbpooling-wwhamr-lessstride-stnorm-manyseparators/1234/save/libri2mix_test.csv
|
36 |
-
|
37 |
-
wsj_data_folder: /network/tmp1/subakany/wham_original
|
38 |
-
train_wsj_data: results/snrtrain-timedomain-sbpooling-wwhamr-lessstride-stnorm-manyseparators/1234/save/wham_tr.csv
|
39 |
-
test_wsj_data: results/snrtrain-timedomain-sbpooling-wwhamr-lessstride-stnorm-manyseparators/1234/save/wham_tt.csv
|
40 |
-
base_folder_dm_whamr: /network/tmp1/subakany/wsj0-processed/si_tr_s
|
41 |
-
use_whamr_train: true
|
42 |
-
whamr_proportion: 0.6
|
43 |
-
|
44 |
-
test_onwsj: false
|
45 |
-
|
46 |
-
skip_prep: false
|
47 |
-
|
48 |
-
ckpt_interval_minutes: 60
|
49 |
-
|
50 |
-
# Experiment params
|
51 |
-
auto_mix_prec: false # Set it to True for mixed precision
|
52 |
-
test_only: false
|
53 |
-
num_spks: 2 # set to 3 for wsj0-3mix
|
54 |
-
progressbar: true
|
55 |
-
save_audio: false # Save estimated sources on disk
|
56 |
sample_rate: 8000
|
57 |
|
58 |
-
# Training parameters
|
59 |
-
N_epochs: 200
|
60 |
-
batch_size: 1
|
61 |
-
lr: 0.0001
|
62 |
-
clip_grad_norm: 5
|
63 |
-
loss_upper_lim: 999999 # this is the upper limit for an acceptable loss
|
64 |
-
# if True, the training sequences are cut to a specified length
|
65 |
-
limit_training_signal_len: false
|
66 |
-
# this is the length of sequences if we choose to limit
|
67 |
-
# the signal length of training sequences
|
68 |
-
training_signal_len: 32000000
|
69 |
-
|
70 |
-
# Set it to True to dynamically create mixtures at training time
|
71 |
-
dynamic_mixing: true
|
72 |
-
use_wham_noise: true
|
73 |
-
use_reverb_augment: true
|
74 |
-
|
75 |
-
# Parameters for data augmentation
|
76 |
-
use_wavedrop: false
|
77 |
-
use_speedperturb: true
|
78 |
-
use_speedperturb_sameforeachsource: false
|
79 |
-
use_rand_shift: false
|
80 |
-
min_shift: -8000
|
81 |
-
max_shift: 8000
|
82 |
-
|
83 |
-
speedperturb: !new:speechbrain.lobes.augment.TimeDomainSpecAugment
|
84 |
-
perturb_prob: 1.0
|
85 |
-
drop_freq_prob: 0.0
|
86 |
-
drop_chunk_prob: 0.0
|
87 |
-
sample_rate: 8000
|
88 |
-
speeds: [95, 100, 105]
|
89 |
-
|
90 |
-
wavedrop: !new:speechbrain.lobes.augment.TimeDomainSpecAugment
|
91 |
-
perturb_prob: 0.0
|
92 |
-
drop_freq_prob: 1.0
|
93 |
-
drop_chunk_prob: 1.0
|
94 |
-
sample_rate: 8000
|
95 |
-
|
96 |
-
# loss thresholding -- this thresholds the training loss
|
97 |
-
threshold_byloss: true
|
98 |
-
threshold: -30
|
99 |
-
|
100 |
-
# Encoder parameters
|
101 |
-
N_encoder_out: 256
|
102 |
-
out_channels: 256
|
103 |
-
kernel_size: 16
|
104 |
-
kernel_stride: 8
|
105 |
-
|
106 |
-
# Dataloader options
|
107 |
-
dataloader_opts:
|
108 |
-
batch_size: 1
|
109 |
-
num_workers: 0
|
110 |
-
|
111 |
-
|
112 |
# Specifying the network
|
113 |
|
114 |
snrmin: 0
|
115 |
snrmax: 10
|
116 |
-
out_n_neurons: 16
|
117 |
use_snr_compression: true
|
118 |
separation_norm_type: stnorm
|
119 |
|
120 |
-
# compute_features: !new:speechbrain.lobes.features.Fbank
|
121 |
-
# n_mels: !ref <n_mels>
|
122 |
-
# left_frames: 0
|
123 |
-
# right_frames: 0
|
124 |
-
# deltas: False
|
125 |
-
|
126 |
latent_dim: 128
|
127 |
n_inp: 256
|
128 |
encoder: &id006 !new:speechbrain.nnet.containers.Sequential
|
@@ -169,26 +58,7 @@ encoder: &id006 !new:speechbrain.nnet.containers.Sequential
|
|
169 |
|
170 |
stat_pooling: !new:speechbrain.nnet.pooling.StatisticsPooling
|
171 |
|
172 |
-
|
173 |
-
# classifier_enc: !new:speechbrain.lobes.models.ECAPA_TDNN.ECAPA_TDNN
|
174 |
-
# input_size: !ref <n_inp>
|
175 |
-
# channels: [1024, 1024, 1024, 1024, 3072]
|
176 |
-
# kernel_sizes: [5, 3, 3, 3, 1]
|
177 |
-
# dilations: [1, 2, 3, 4, 1]
|
178 |
-
# attention_channels: 128
|
179 |
-
# lin_neurons: 192
|
180 |
-
|
181 |
-
#classifier_out: !new:speechbrain.lobes.models.ECAPA_TDNN.Classifier
|
182 |
-
# input_size: 192
|
183 |
-
# out_neurons: !ref <out_n_neurons>
|
184 |
-
#
|
185 |
-
# classifier_out: !new:speechbrain.nnet.linear.Linear
|
186 |
-
# input_size: 256
|
187 |
-
# n_neurons: 1
|
188 |
-
|
189 |
encoder_out: &id007 !new:speechbrain.nnet.containers.Sequential
|
190 |
-
# lr_scheduler: !ref <lr_scheduler>
|
191 |
-
|
192 |
input_shape: [!!null '', 256]
|
193 |
layer1: !new:speechbrain.nnet.linear.Linear
|
194 |
input_size: 256
|
@@ -199,38 +69,9 @@ encoder_out: &id007 !new:speechbrain.nnet.containers.Sequential
|
|
199 |
n_neurons: 1
|
200 |
sigm: !new:torch.nn.Sigmoid
|
201 |
|
202 |
-
|
203 |
-
|
204 |
-
classifier_loss: !new:torch.nn.CrossEntropyLoss
|
205 |
-
|
206 |
-
optimizer: !name:torch.optim.Adam
|
207 |
-
lr: 0.0001
|
208 |
-
weight_decay: 0
|
209 |
-
|
210 |
-
loss: !name:speechbrain.nnet.losses.get_si_snr_with_pitwrapper
|
211 |
-
|
212 |
-
lr_scheduler: !new:speechbrain.nnet.schedulers.ReduceLROnPlateau
|
213 |
-
factor: 0.5
|
214 |
-
patience: 2
|
215 |
-
dont_halve_until_epoch: 95
|
216 |
-
|
217 |
-
epoch_counter: &id008 !new:speechbrain.utils.epoch_loop.EpochCounter
|
218 |
-
limit: 200
|
219 |
-
|
220 |
modules:
|
221 |
encoder: *id006
|
222 |
encoder_out: *id007
|
223 |
-
checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer
|
224 |
-
checkpoints_dir: results/snrtrain-timedomain-sbpooling-wwhamr-lessstride-stnorm-manyseparators/1234/save
|
225 |
-
recoverables:
|
226 |
-
counter: *id008
|
227 |
-
encoder: *id006
|
228 |
-
encoder_out: *id007
|
229 |
-
train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger
|
230 |
-
save_file: results/snrtrain-timedomain-sbpooling-wwhamr-lessstride-stnorm-manyseparators/1234/train_log.txt
|
231 |
-
|
232 |
-
num_separators_per_model: 3
|
233 |
-
separator_base_folder: /home/mila/s/subakany/speechbrain_new/recipes/WHAMandWHAMR/separation/results/
|
234 |
|
235 |
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
|
236 |
loadables:
|
|
|
|
|
|
|
|
|
1 |
# ################################
|
2 |
+
# Model: Neural SI-SNR Estimator with Pool training strategy (https://arxiv.org/pdf/2110.10812.pdf)
|
3 |
+
# Dataset : LibriMix and WHAMR!
|
|
|
4 |
# ################################
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
sample_rate: 8000
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
# Specifying the network
|
9 |
|
10 |
snrmin: 0
|
11 |
snrmax: 10
|
|
|
12 |
use_snr_compression: true
|
13 |
separation_norm_type: stnorm
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
latent_dim: 128
|
16 |
n_inp: 256
|
17 |
encoder: &id006 !new:speechbrain.nnet.containers.Sequential
|
|
|
58 |
|
59 |
stat_pooling: !new:speechbrain.nnet.pooling.StatisticsPooling
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
encoder_out: &id007 !new:speechbrain.nnet.containers.Sequential
|
|
|
|
|
62 |
input_shape: [!!null '', 256]
|
63 |
layer1: !new:speechbrain.nnet.linear.Linear
|
64 |
input_size: 256
|
|
|
69 |
n_neurons: 1
|
70 |
sigm: !new:torch.nn.Sigmoid
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
modules:
|
73 |
encoder: *id006
|
74 |
encoder_out: *id007
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
|
77 |
loadables:
|
hyperparams_training.yaml
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ################################
|
2 |
+
# Model: Neural SI-SNR Estimator with Pool training strategy (https://arxiv.org/pdf/2110.10812.pdf)
|
3 |
+
# Dataset : LibriMix and WHAMR!
|
4 |
+
# ################################
|
5 |
+
#
|
6 |
+
# Basic parameters
|
7 |
+
# Seed needs to be set at top of yaml, before objects with parameters are made
|
8 |
+
#
|
9 |
+
seed: 1234
|
10 |
+
__set_seed: !apply:torch.manual_seed [1234]
|
11 |
+
|
12 |
+
# Data params
|
13 |
+
|
14 |
+
# e.g. '/yourpath/wsj0-mix/2speakers'
|
15 |
+
# end with 2speakers for wsj0-2mix or 3speakers for wsj0-3mix
|
16 |
+
data_folder: /miniscratch/subakany/LibriMixData_new/Libri2Mix/
|
17 |
+
|
18 |
+
# the path for wsj0/si_tr_s/ folder -- only needed if dynamic mixing is used
|
19 |
+
# e.g. /yourpath/wsj0-processed/si_tr_s/
|
20 |
+
# you need to convert the original wsj0 to 8k
|
21 |
+
# you can do this conversion with the script ../meta/preprocess_dynamic_mixing.py
|
22 |
+
base_folder_dm: /miniscratch/subakany/LibriMixData_new/LibriSpeech/train-clean-360_processed/
|
23 |
+
rir_path: /miniscratch/subakany/whamr_rirs_wav
|
24 |
+
|
25 |
+
experiment_name: snrtrain-timedomain-sbpooling-wwhamr-lessstride-stnorm-manyseparators
|
26 |
+
output_folder: results/snrtrain-timedomain-sbpooling-wwhamr-lessstride-stnorm-manyseparators/1234
|
27 |
+
train_log: results/snrtrain-timedomain-sbpooling-wwhamr-lessstride-stnorm-manyseparators/1234/train_log.txt
|
28 |
+
save_folder: results/snrtrain-timedomain-sbpooling-wwhamr-lessstride-stnorm-manyseparators/1234/save
|
29 |
+
train_data: results/snrtrain-timedomain-sbpooling-wwhamr-lessstride-stnorm-manyseparators/1234/save/libri2mix_train-360.csv
|
30 |
+
valid_data: results/snrtrain-timedomain-sbpooling-wwhamr-lessstride-stnorm-manyseparators/1234/save/libri2mix_dev.csv
|
31 |
+
test_data: results/snrtrain-timedomain-sbpooling-wwhamr-lessstride-stnorm-manyseparators/1234/save/libri2mix_test.csv
|
32 |
+
|
33 |
+
wsj_data_folder: /network/tmp1/subakany/wham_original
|
34 |
+
train_wsj_data: results/snrtrain-timedomain-sbpooling-wwhamr-lessstride-stnorm-manyseparators/1234/save/wham_tr.csv
|
35 |
+
test_wsj_data: results/snrtrain-timedomain-sbpooling-wwhamr-lessstride-stnorm-manyseparators/1234/save/wham_tt.csv
|
36 |
+
base_folder_dm_whamr: /network/tmp1/subakany/wsj0-processed/si_tr_s
|
37 |
+
use_whamr_train: true
|
38 |
+
whamr_proportion: 0.6
|
39 |
+
|
40 |
+
test_onwsj: false
|
41 |
+
|
42 |
+
skip_prep: false
|
43 |
+
|
44 |
+
ckpt_interval_minutes: 60
|
45 |
+
|
46 |
+
# Experiment params
|
47 |
+
auto_mix_prec: false # Set it to True for mixed precision
|
48 |
+
test_only: false
|
49 |
+
num_spks: 2 # set to 3 for wsj0-3mix
|
50 |
+
progressbar: true
|
51 |
+
save_audio: false # Save estimated sources on disk
|
52 |
+
sample_rate: 8000
|
53 |
+
|
54 |
+
# Training parameters
|
55 |
+
N_epochs: 200
|
56 |
+
batch_size: 1
|
57 |
+
lr: 0.0001
|
58 |
+
clip_grad_norm: 5
|
59 |
+
loss_upper_lim: 999999 # this is the upper limit for an acceptable loss
|
60 |
+
# if True, the training sequences are cut to a specified length
|
61 |
+
limit_training_signal_len: false
|
62 |
+
# this is the length of sequences if we choose to limit
|
63 |
+
# the signal length of training sequences
|
64 |
+
training_signal_len: 32000000
|
65 |
+
|
66 |
+
# Set it to True to dynamically create mixtures at training time
|
67 |
+
dynamic_mixing: true
|
68 |
+
use_wham_noise: true
|
69 |
+
use_reverb_augment: true
|
70 |
+
|
71 |
+
# Parameters for data augmentation
|
72 |
+
use_wavedrop: false
|
73 |
+
use_speedperturb: true
|
74 |
+
use_speedperturb_sameforeachsource: false
|
75 |
+
use_rand_shift: false
|
76 |
+
min_shift: -8000
|
77 |
+
max_shift: 8000
|
78 |
+
|
79 |
+
speedperturb: !new:speechbrain.lobes.augment.TimeDomainSpecAugment
|
80 |
+
perturb_prob: 1.0
|
81 |
+
drop_freq_prob: 0.0
|
82 |
+
drop_chunk_prob: 0.0
|
83 |
+
sample_rate: 8000
|
84 |
+
speeds: [95, 100, 105]
|
85 |
+
|
86 |
+
wavedrop: !new:speechbrain.lobes.augment.TimeDomainSpecAugment
|
87 |
+
perturb_prob: 0.0
|
88 |
+
drop_freq_prob: 1.0
|
89 |
+
drop_chunk_prob: 1.0
|
90 |
+
sample_rate: 8000
|
91 |
+
|
92 |
+
# loss thresholding -- this thresholds the training loss
|
93 |
+
threshold_byloss: true
|
94 |
+
threshold: -30
|
95 |
+
|
96 |
+
# Encoder parameters
|
97 |
+
N_encoder_out: 256
|
98 |
+
out_channels: 256
|
99 |
+
kernel_size: 16
|
100 |
+
kernel_stride: 8
|
101 |
+
|
102 |
+
# Dataloader options
|
103 |
+
dataloader_opts:
|
104 |
+
batch_size: 1
|
105 |
+
num_workers: 0
|
106 |
+
|
107 |
+
|
108 |
+
# Specifying the network
|
109 |
+
|
110 |
+
snrmin: 0
|
111 |
+
snrmax: 10
|
112 |
+
out_n_neurons: 16
|
113 |
+
use_snr_compression: true
|
114 |
+
separation_norm_type: stnorm
|
115 |
+
|
116 |
+
# compute_features: !new:speechbrain.lobes.features.Fbank
|
117 |
+
# n_mels: !ref <n_mels>
|
118 |
+
# left_frames: 0
|
119 |
+
# right_frames: 0
|
120 |
+
# deltas: False
|
121 |
+
|
122 |
+
latent_dim: 128
|
123 |
+
n_inp: 256
|
124 |
+
encoder: &id006 !new:speechbrain.nnet.containers.Sequential
|
125 |
+
input_shape: [!!null '', 2, !!null '']
|
126 |
+
cnn1: !new:speechbrain.nnet.CNN.Conv1d
|
127 |
+
in_channels: 2
|
128 |
+
kernel_size: 4
|
129 |
+
out_channels: 128
|
130 |
+
stride: 1
|
131 |
+
skip_transpose: true
|
132 |
+
padding: valid
|
133 |
+
relu1: !new:torch.nn.ReLU
|
134 |
+
cnn2: !new:speechbrain.nnet.CNN.Conv1d
|
135 |
+
in_channels: 128
|
136 |
+
kernel_size: 4
|
137 |
+
out_channels: 128
|
138 |
+
stride: 2
|
139 |
+
skip_transpose: true
|
140 |
+
padding: valid
|
141 |
+
relu2: !new:torch.nn.ReLU
|
142 |
+
cnn3: !new:speechbrain.nnet.CNN.Conv1d
|
143 |
+
in_channels: 128
|
144 |
+
kernel_size: 4
|
145 |
+
out_channels: 128
|
146 |
+
stride: 2
|
147 |
+
skip_transpose: true
|
148 |
+
padding: valid
|
149 |
+
relu3: !new:torch.nn.ReLU
|
150 |
+
cnn4: !new:speechbrain.nnet.CNN.Conv1d
|
151 |
+
in_channels: 128
|
152 |
+
kernel_size: 4
|
153 |
+
out_channels: 128
|
154 |
+
stride: 2
|
155 |
+
skip_transpose: true
|
156 |
+
padding: valid
|
157 |
+
relu4: !new:torch.nn.ReLU
|
158 |
+
cnn5: !new:speechbrain.nnet.CNN.Conv1d
|
159 |
+
in_channels: 128
|
160 |
+
kernel_size: 4
|
161 |
+
out_channels: 128
|
162 |
+
stride: 2
|
163 |
+
skip_transpose: true
|
164 |
+
padding: valid
|
165 |
+
|
166 |
+
stat_pooling: !new:speechbrain.nnet.pooling.StatisticsPooling
|
167 |
+
|
168 |
+
|
169 |
+
# classifier_enc: !new:speechbrain.lobes.models.ECAPA_TDNN.ECAPA_TDNN
|
170 |
+
# input_size: !ref <n_inp>
|
171 |
+
# channels: [1024, 1024, 1024, 1024, 3072]
|
172 |
+
# kernel_sizes: [5, 3, 3, 3, 1]
|
173 |
+
# dilations: [1, 2, 3, 4, 1]
|
174 |
+
# attention_channels: 128
|
175 |
+
# lin_neurons: 192
|
176 |
+
|
177 |
+
#classifier_out: !new:speechbrain.lobes.models.ECAPA_TDNN.Classifier
|
178 |
+
# input_size: 192
|
179 |
+
# out_neurons: !ref <out_n_neurons>
|
180 |
+
#
|
181 |
+
# classifier_out: !new:speechbrain.nnet.linear.Linear
|
182 |
+
# input_size: 256
|
183 |
+
# n_neurons: 1
|
184 |
+
|
185 |
+
encoder_out: &id007 !new:speechbrain.nnet.containers.Sequential
|
186 |
+
# lr_scheduler: !ref <lr_scheduler>
|
187 |
+
|
188 |
+
input_shape: [!!null '', 256]
|
189 |
+
layer1: !new:speechbrain.nnet.linear.Linear
|
190 |
+
input_size: 256
|
191 |
+
n_neurons: 256
|
192 |
+
relu: !new:torch.nn.ReLU
|
193 |
+
layer2: !new:speechbrain.nnet.linear.Linear
|
194 |
+
input_size: 256
|
195 |
+
n_neurons: 1
|
196 |
+
sigm: !new:torch.nn.Sigmoid
|
197 |
+
|
198 |
+
|
199 |
+
|
200 |
+
classifier_loss: !new:torch.nn.CrossEntropyLoss
|
201 |
+
|
202 |
+
optimizer: !name:torch.optim.Adam
|
203 |
+
lr: 0.0001
|
204 |
+
weight_decay: 0
|
205 |
+
|
206 |
+
loss: !name:speechbrain.nnet.losses.get_si_snr_with_pitwrapper
|
207 |
+
|
208 |
+
lr_scheduler: !new:speechbrain.nnet.schedulers.ReduceLROnPlateau
|
209 |
+
factor: 0.5
|
210 |
+
patience: 2
|
211 |
+
dont_halve_until_epoch: 95
|
212 |
+
|
213 |
+
epoch_counter: &id008 !new:speechbrain.utils.epoch_loop.EpochCounter
|
214 |
+
limit: 200
|
215 |
+
|
216 |
+
modules:
|
217 |
+
encoder: *id006
|
218 |
+
encoder_out: *id007
|
219 |
+
checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer
|
220 |
+
checkpoints_dir: results/snrtrain-timedomain-sbpooling-wwhamr-lessstride-stnorm-manyseparators/1234/save
|
221 |
+
recoverables:
|
222 |
+
counter: *id008
|
223 |
+
encoder: *id006
|
224 |
+
encoder_out: *id007
|
225 |
+
train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger
|
226 |
+
save_file: results/snrtrain-timedomain-sbpooling-wwhamr-lessstride-stnorm-manyseparators/1234/train_log.txt
|
227 |
+
|
228 |
+
num_separators_per_model: 3
|
229 |
+
separator_base_folder: /home/mila/s/subakany/speechbrain_new/recipes/WHAMandWHAMR/separation/results/
|
230 |
+
|
231 |
+
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
|
232 |
+
loadables:
|
233 |
+
encoder: !ref <encoder>
|
234 |
+
encoder_out: !ref <encoder_out>
|