File size: 3,432 Bytes
8789192
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import torch
from speechbrain.pretrained import Pretrained


class CustomSLUDecoder(Pretrained):
    """A end-to-end SLU model using hubert self-supervised encoder.

    The class can be used either to run only the encoder (encode()) to extract
    features or to run the entire model (decode()) to map the speech to its semantics.

    Example
    -------
    >>> from speechbrain.pretrained.interfaces import foreign_class
    >>> slu_model = foreign_class(source="speechbrain/slu-timers-and-such-direct-librispeech-asr", 
                    pymodule_file="custom_interface.py", classname="CustomEncoderWav2vec2Classifier")
    >>> slu_model.decode_file("samples/audio_samples/example6.wav")
    "{'intent': 'SimpleMath', 'slots': {'number1': 37.67, 'number2': 75.7, 'op': ' minus '}}"
    """

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.tokenizer = self.hparams.tokenizer

    def decode_file(self, path):
        """Maps the given audio file to a string representing the
        semantic dictionary for the utterance.

        Arguments
        ---------
        path : str
            Path to audio file to decode.

        Returns
        -------
        str
            The predicted semantics.
        """
        waveform = self.load_audio(path)
        waveform = waveform.to(self.device)
        # Fake a batch:
        batch = waveform.unsqueeze(0)
        rel_length = torch.tensor([1.0])
        predicted_words, predicted_tokens = self.decode_batch(batch, rel_length)
        return predicted_words[0]
    
    def encode_batch(self, wavs):
        """Encodes the input audio into a sequence of hidden states

        Arguments
        ---------
        wavs : torch.tensor
            Batch of waveforms [batch, time, channels] or [batch, time]
            depending on the model.

        Returns
        -------
        torch.tensor
            The encoded batch
        """
        wavs = wavs.float()
        wavs = wavs.to(self.device)
        encoder_out = self.mods.hubert(wavs.detach())
        return encoder_out

    def decode_batch(self, wavs, wav_lens):
        """Maps the input audio to its semantics

        Arguments
        ---------
        wavs : torch.tensor
            Batch of waveforms [batch, time, channels] or [batch, time]
            depending on the model.
        wav_lens : torch.tensor
            Lengths of the waveforms relative to the longest one in the
            batch, tensor of shape [batch]. The longest one should have
            relative length 1.0 and others len(waveform) / max_length.
            Used for ignoring padding.

        Returns
        -------
        list
            Each waveform in the batch decoded.
        tensor
            Each predicted token id.
        """
        with torch.no_grad():
            wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)
            encoder_out = self.encode_batch(wavs)
            predicted_tokens, scores = self.mods.beam_searcher(
                encoder_out, wav_lens
            )
            predicted_words = [
                self.tokenizer.decode_ids(token_seq)
                for token_seq in predicted_tokens
            ]
        return predicted_words, predicted_tokens

    def forward(self, wavs, wav_lens):
        """Runs full decoding - note: no gradients through decoding"""
        return self.decode_batch(wavs, wav_lens)