File size: 3,788 Bytes
957b82c 91c8028 957b82c 2c7572e 957b82c 91c8028 957b82c e08c2b1 36ef5d6 e08c2b1 957b82c 08c9431 74edfc7 d7ff57e 4ceee33 957b82c 74edfc7 31481a7 957b82c 31481a7 74edfc7 957b82c 273cf5d 957b82c 08c9431 957b82c 08c9431 8d780cd 957b82c aa9e566 c4f5d60 5ad1d36 957b82c 5ad1d36 957b82c 15b2226 5e85f82 15b2226 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
---
language: "fr"
thumbnail:
tags:
- automatic-speech-recognition
- CTC
- Attention
- pytorch
- speechbrain
license: "apache-2.0"
datasets:
- common_voice
metrics:
- wer
- cer
---
<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
<br/><br/>
# CRDNN with CTC/Attention trained on CommonVoice French (No LM)
This repository provides all the necessary tools to perform automatic speech
recognition from an end-to-end system pretrained on CommonVoice (French Language) within
SpeechBrain. For a better experience, we encourage you to learn more about
[SpeechBrain](https://speechbrain.github.io).
The performance of the model is the following:
| Release | Test CER | Test WER | GPUs |
|:-------------:|:--------------:|:--------------:| :--------:|
| 07-03-21 | 6.54 | 17.70 | 2xV100 16GB |
## Pipeline description
This ASR system is composed of 2 different but linked blocks:
- Tokenizer (unigram) that transforms words into subword units and trained with
the train transcriptions (train.tsv) of CommonVoice (FR).
- Acoustic model (CRDNN + CTC/Attention). The CRDNN architecture is made of
N blocks of convolutional neural networks with normalization and pooling on the
frequency domain. Then, a bidirectional LSTM is connected to a final DNN to obtain
the final acoustic representation that is given to the CTC and attention decoders.
## Install SpeechBrain
First of all, please install SpeechBrain with the following command:
```
pip install speechbrain
```
Please notice that we encourage you to read our tutorials and learn more about
[SpeechBrain](https://speechbrain.github.io).
### Transcribing your own audio files (in French)
```python
from speechbrain.pretrained import EncoderDecoderASR
asr_model = EncoderDecoderASR.from_hparams(source="speechbrain/asr-crdnn-commonvoice-fr", savedir="pretrained_models/asr-crdnn-commonvoice-fr")
asr_model.transcribe_file("speechbrain/asr-crdnn-commonvoice-fr/example-fr.wav")
```
### Inference on GPU
To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
### Limitations
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
### Training
The model was trained with SpeechBrain (Hash).
To train it from scratch follows these steps:
1. Clone SpeechBrain:
```bash
git clone https://github.com/speechbrain/speechbrain/
```
2. Install it:
```
cd speechbrain
pip install -r requirements.txt
pip install -e .
```
3. Run Training:
```
cd recipes/LibriSpeech/ASR/seq2seq/
python train.py hparams/train.yaml --data_folder=your_data_folder
```
You can find our training results (models, logs, etc) [here]()
#### Referencing SpeechBrain
```
@misc{SB2021,
author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua },
title = {SpeechBrain},
year = {2021},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\\url{https://github.com/speechbrain/speechbrain}},
}
```
#### About SpeechBrain
SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains.
Website: https://speechbrain.github.io/
GitHub: https://github.com/speechbrain/speechbrain
|