poonehmousavi
commited on
Commit
·
5ce8519
1
Parent(s):
de62b58
Upload 3 files
Browse files- README.md +129 -0
- config.json +3 -0
- hyperparams.yaml +77 -0
README.md
CHANGED
@@ -1,3 +1,132 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- ar
|
4 |
+
thumbnail: null
|
5 |
+
pipeline_tag: automatic-speech-recognition
|
6 |
+
tags:
|
7 |
+
- whisper
|
8 |
+
- pytorch
|
9 |
+
- speechbrain
|
10 |
+
- Transformer
|
11 |
+
- hf-asr-leaderboard
|
12 |
license: apache-2.0
|
13 |
+
datasets:
|
14 |
+
- commonvoice
|
15 |
+
metrics:
|
16 |
+
- wer
|
17 |
+
- cer
|
18 |
+
model-index:
|
19 |
+
- name: asr-whisper-large-v2-commonvoice-ar
|
20 |
+
results:
|
21 |
+
- task:
|
22 |
+
name: Automatic Speech Recognition
|
23 |
+
type: automatic-speech-recognition
|
24 |
+
dataset:
|
25 |
+
name: CommonVoice 10.0 (Arabic)
|
26 |
+
type: mozilla-foundation/common_voice_10_0
|
27 |
+
config: ar
|
28 |
+
split: test
|
29 |
+
args:
|
30 |
+
language: ar
|
31 |
+
metrics:
|
32 |
+
- name: Test WER
|
33 |
+
type: wer
|
34 |
+
value: '64.92'
|
35 |
---
|
36 |
+
|
37 |
+
<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
|
38 |
+
<br/><br/>
|
39 |
+
|
40 |
+
# whisper large-v2 fine-tuned on CommonVoice Arabic
|
41 |
+
|
42 |
+
This repository provides all the necessary tools to perform automatic speech
|
43 |
+
recognition from an end-to-end whisper model fine-tuned on CommonVoice (Arabic Language) within
|
44 |
+
SpeechBrain. For a better experience, we encourage you to learn more about
|
45 |
+
[SpeechBrain](https://speechbrain.github.io).
|
46 |
+
|
47 |
+
The performance of the model is the following:
|
48 |
+
|
49 |
+
| Release | Test CER | Test WER | GPUs |
|
50 |
+
|:-------------:|:--------------:|:--------------:| :--------:|
|
51 |
+
| 01-02-23 | 5.20 | 16.96 | 1xV100 16GB |
|
52 |
+
|
53 |
+
## Pipeline description
|
54 |
+
|
55 |
+
This ASR system is composed of whisper encoder-decoder blocks:
|
56 |
+
- The pretrained whisper-large-v2 encoder is frozen.
|
57 |
+
- The pretrained Whisper tokenizer is used.
|
58 |
+
- A pretrained Whisper-large-v2 decoder ([openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2)) is finetuned on CommonVoice Ar.
|
59 |
+
The obtained final acoustic representation is given to the greedy decoder.
|
60 |
+
|
61 |
+
The system is trained with recordings sampled at 16kHz (single channel).
|
62 |
+
The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *transcribe_file* if needed.
|
63 |
+
|
64 |
+
## Install SpeechBrain
|
65 |
+
|
66 |
+
First of all, please install tranformers and SpeechBrain with the following command:
|
67 |
+
|
68 |
+
```
|
69 |
+
pip install speechbrain transformers
|
70 |
+
```
|
71 |
+
|
72 |
+
Please notice that we encourage you to read our tutorials and learn more about
|
73 |
+
[SpeechBrain](https://speechbrain.github.io).
|
74 |
+
|
75 |
+
### Transcribing your own audio files (in Arabic)
|
76 |
+
|
77 |
+
```python
|
78 |
+
|
79 |
+
from speechbrain.pretrained import WhisperASR
|
80 |
+
|
81 |
+
asr_model = WhisperASR.from_hparams(source="speechbrain/asr-whisper-large-v2-commonvoice-ar", savedir="retrained_models/asr-whisper-large-v2-commonvoice-ar")
|
82 |
+
asr_model.transcribe_file("speechbrain/asr-whisper-large-v2-commonvoice-ar/example-ar.mp3")
|
83 |
+
|
84 |
+
|
85 |
+
```
|
86 |
+
### Inference on GPU
|
87 |
+
To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
|
88 |
+
|
89 |
+
### Training
|
90 |
+
The model was trained with SpeechBrain.
|
91 |
+
To train it from scratch follow these steps:
|
92 |
+
1. Clone SpeechBrain:
|
93 |
+
```bash
|
94 |
+
git clone https://github.com/speechbrain/speechbrain/
|
95 |
+
```
|
96 |
+
2. Install it:
|
97 |
+
```bash
|
98 |
+
cd speechbrain
|
99 |
+
pip install -r requirements.txt
|
100 |
+
pip install -e .
|
101 |
+
```
|
102 |
+
|
103 |
+
3. Run Training:
|
104 |
+
```bash
|
105 |
+
cd recipes/CommonVoice/ASR/transformer/
|
106 |
+
python train_with_whisper.py hparams/train_ar_hf_whisper.yaml --data_folder=your_data_folder
|
107 |
+
```
|
108 |
+
|
109 |
+
You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/10mYPYfj9NpDNAa0nO16Zd_K1bIEUOIpx?usp=share_link).
|
110 |
+
|
111 |
+
### Limitations
|
112 |
+
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
|
113 |
+
|
114 |
+
#### Referencing SpeechBrain
|
115 |
+
|
116 |
+
```
|
117 |
+
@misc{SB2021,
|
118 |
+
author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua },
|
119 |
+
title = {SpeechBrain},
|
120 |
+
year = {2021},
|
121 |
+
publisher = {GitHub},
|
122 |
+
journal = {GitHub repository},
|
123 |
+
howpublished = {\\\\url{https://github.com/speechbrain/speechbrain}},
|
124 |
+
}
|
125 |
+
```
|
126 |
+
|
127 |
+
#### About SpeechBrain
|
128 |
+
SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains.
|
129 |
+
|
130 |
+
Website: https://speechbrain.github.io/
|
131 |
+
|
132 |
+
GitHub: https://github.com/speechbrain/speechbrain
|
config.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"speechbrain_interface": "WhisperASR"
|
3 |
+
}
|
hyperparams.yaml
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ################################
|
2 |
+
# Model: Whisper (Encoder-Decoder) + NLL
|
3 |
+
# Augmentation: TimeDomainSpecAugment
|
4 |
+
# Authors: Pooneh Mousavi 2022
|
5 |
+
# ################################
|
6 |
+
|
7 |
+
|
8 |
+
# URL for the biggest Fairseq english whisper model.
|
9 |
+
whisper_hub: openai/whisper-large-v2
|
10 |
+
|
11 |
+
# Normalize inputs with
|
12 |
+
# the same normalization done in the paper. Refer to Appendix C for further information.
|
13 |
+
normalized_transcripts: True
|
14 |
+
|
15 |
+
|
16 |
+
language: arabic
|
17 |
+
|
18 |
+
auto_mix_prec: False
|
19 |
+
sample_rate: 16000
|
20 |
+
|
21 |
+
# These values are only used for the searchers.
|
22 |
+
# They needs to be hardcoded and should not be changed with Whisper.
|
23 |
+
# They are used as part of the searching process.
|
24 |
+
# The bos token of the searcher will be timestamp_index
|
25 |
+
# and will be concatenated with the bos, language and task tokens.
|
26 |
+
timestamp_index: 50363
|
27 |
+
eos_index: 50257
|
28 |
+
bos_index: 50258
|
29 |
+
|
30 |
+
# Decoding parameters
|
31 |
+
min_decode_ratio: 0.0
|
32 |
+
max_decode_ratio: 0.1
|
33 |
+
test_beam_size: 8
|
34 |
+
|
35 |
+
# Model parameters
|
36 |
+
freeze_whisper: True
|
37 |
+
freeze_encoder: True
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
whisper: !new:speechbrain.lobes.models.huggingface_whisper.HuggingFaceWhisper
|
42 |
+
source: !ref <whisper_hub>
|
43 |
+
freeze: !ref <freeze_whisper>
|
44 |
+
freeze_encoder: !ref <freeze_encoder>
|
45 |
+
save_path: whisper_checkpoints
|
46 |
+
encoder_only: False
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
decoder: !new:speechbrain.decoders.seq2seq.S2SWhisperGreedySearch
|
51 |
+
model: !ref <whisper>
|
52 |
+
bos_index: !ref <timestamp_index>
|
53 |
+
eos_index: !ref <eos_index>
|
54 |
+
min_decode_ratio: !ref <min_decode_ratio>
|
55 |
+
max_decode_ratio: !ref <max_decode_ratio>
|
56 |
+
|
57 |
+
# test_beam_searcher: !new:speechbrain.decoders.seq2seq.S2SWhisperBeamSearch
|
58 |
+
# module: [!ref <whisper>]
|
59 |
+
# bos_index: !ref <timestamp_index>
|
60 |
+
# eos_index: !ref <eos_index>
|
61 |
+
# min_decode_ratio: !ref <min_decode_ratio>
|
62 |
+
# max_decode_ratio: !ref <max_decode_ratio>
|
63 |
+
# beam_size: !ref <test_beam_size>
|
64 |
+
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
modules:
|
70 |
+
whisper: !ref <whisper>
|
71 |
+
decoder: !ref <decoder>
|
72 |
+
|
73 |
+
|
74 |
+
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
|
75 |
+
loadables:
|
76 |
+
whisper: !ref <whisper>
|
77 |
+
|