File size: 9,059 Bytes
a8ec082 2e3199b a8ec082 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import fastapi
import shutil
import os
import zipfile
import io
import uvicorn
import threading
import glob
from typing import List
import torch
import gdown
from soundfile import write
from torchaudio import load
from librosa import resample
import logging
logging.basicConfig(level=logging.DEBUG)
from sgmse import ScoreModel
from sgmse.util.other import pad_spec
class ModelAPI:
def __init__(self, host, port):
self.host = host
self.port = port
self.base_path = os.path.join(os.path.expanduser("~"), ".modelapi")
self.noisy_audio_path = os.path.join(self.base_path, "noisy_audio")
self.enhanced_audio_path = os.path.join(self.base_path, "enhanced_audio")
self.ckpt_path = None
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.corrector = "ald"
self.corrector_steps = 1
self.snr = 0.33
self.N = 50
# Create directories if they do not exist
for audio_path in [self.noisy_audio_path, self.enhanced_audio_path]:
if not os.path.exists(audio_path):
os.makedirs(audio_path)
# Loop through all the files and subdirectories in the directory
for filename in os.listdir(audio_path):
file_path = os.path.join(audio_path, filename)
# Check if it's a file or directory and remove accordingly
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path) # Remove the file or link
elif os.path.isdir(file_path):
shutil.rmtree(file_path) # Remove the directory and its contents
except Exception as e:
raise e
self.app = fastapi.FastAPI()
self._setup_routes()
def _prepare(self):
"""Miners should modify this function to fit their fine-tuned models.
This function will make any preparations necessary to initialize the
speech enhancement model (i.e. downloading checkpoint files, etc.)
"""
# Define .zip download path and ckpt path
self.ckpt_path = os.path.join(self.base_path, "train_wsj0_2cta4cov_epoch=159.ckpt")
if not os.path.exists(self.ckpt_path):
# Define gdown download params
file_id = "1ZENQY9WaRIZXu44lPBrPPfCAbx0Lub88"
url = f"https://drive.google.com/uc?id={file_id}"
# Download ckpt
gdown.download(url, self.ckpt_path)
# Initialize model
self.model = ScoreModel.load_from_checkpoint(self.ckpt_path, self.device)
self.model.t_eps = 0.03
self.model.eval()
def _enhance(self):
"""
Miners should modify this function to fit their fine-tuned models.
This function will:
1. Open each noisy .wav file
2. Enhance the audio with the model
3. Save the enhanced audio in .wav format to ModelAPI.enhanced_audio_path
"""
# Check if the model is trained on 48 kHz data
if self.model.backbone == 'ncsnpp_48k':
target_sr = 48000
pad_mode = "reflection"
else:
target_sr = 16000
pad_mode = "zero_pad"
# Define file paths for all noisy files to be enhanced
noisy_files = sorted(glob.glob(os.path.join(self.noisy_audio_path, '*.wav')))
for noisy_file in noisy_files:
filename = noisy_file.replace(self.noisy_audio_path, "")
filename = filename[1:] if filename.startswith("/") else filename
# Load wav
y, sr = load(noisy_file)
# Resample if necessary
if sr != target_sr:
y = torch.tensor(resample(y.numpy(), orig_sr=sr, target_sr=target_sr))
T_orig = y.size(1)
# Normalize
norm_factor = y.abs().max()
y = y / norm_factor
# Prepare DNN input
Y = torch.unsqueeze(self.model._forward_transform(self.model._stft(y.to(self.device))), 0)
Y = pad_spec(Y, mode=pad_mode)
# Reverse sampling
sampler = self.model.get_pc_sampler('reverse_diffusion', self.corrector, Y.to(self.device), N=self.N, corrector_steps=self.corrector_steps, snr=self.snr)
sample, _ = sampler()
# Backward transform in time domain
x_hat = self.model.to_audio(sample.squeeze(), T_orig)
# Renormalize
x_hat = x_hat * norm_factor
# Write enhanced wav file
os.makedirs(os.path.dirname(os.path.join(self.enhanced_audio_path, filename)), exist_ok=True)
write(os.path.join(self.enhanced_audio_path, filename), x_hat.cpu().numpy(), target_sr)
def _setup_routes(self):
"""
Setup API routes:
/status/ : Communicates API status
/upload-audio/ : Upload audio files, save to noisy audio directory
/enhance/ : Enhance audio files, save to enhanced audio directory
/download-enhanced/ : Download enhanced audio files
"""
self.app.get("/status/")(self.get_status)
self.app.post("/prepare/")(self.prepare)
self.app.post("/upload-audio/")(self.upload_audio)
self.app.post("/enhance/")(self.enhance_audio)
self.app.get("/download-enhanced/")(self.download_enhanced)
def get_status(self):
try:
return {"container_running": True}
except:
raise fastapi.HTTPException(status_code=500, detail="An error occurred while fetching API status.")
def prepare(self):
try:
self._prepare()
return {'preparations': True}
except:
return fastapi.HTTPException(status_code=500, detail="An error occurred while fetching API status.")
def upload_audio(self, files: List[fastapi.UploadFile] = fastapi.File(...)):
uploaded_files = []
for file in files:
try:
# Define the path to save the file
file_path = os.path.join(self.noisy_audio_path, file.filename)
# Save the uploaded file
with open(file_path, "wb") as f:
while contents := file.file.read(1024*1024):
f.write(contents)
# Append the file name to the list of uploaded files
uploaded_files.append(file.filename)
except:
raise fastapi.HTTPException(status_code=500, detail="An error occurred while uploading the noisy files.")
finally:
file.file.close()
print(f"uploaded files: {uploaded_files}")
return {"uploaded_files": uploaded_files, "status": True}
def enhance_audio(self):
try:
# Enhance audio
self._enhance()
# Obtain list of file paths for enhanced audio
wav_files = glob.glob(os.path.join(self.enhanced_audio_path, '*.wav'))
# Extract just the file names
enhanced_files = [os.path.basename(file) for file in wav_files]
return {"status": True}
except Exception as e:
print(f"Exception occured during enhancement: {e}")
raise fastapi.HTTPException(status_code=500, detail="An error occurred while enhancing the noisy files.")
def download_enhanced(self):
try:
# Create an in-memory zip file to hold all the enhanced audio files
zip_buffer = io.BytesIO()
with zipfile.ZipFile(zip_buffer, "w") as zip_file:
# Add each .wav file in the enhanced_audio_path directory to the zip file
for wav_file in glob.glob(os.path.join(self.enhanced_audio_path, '*.wav')):
zip_file.write(wav_file, arcname=os.path.basename(wav_file))
# Make sure to seek back to the start of the BytesIO object before sending it
zip_buffer.seek(0)
# Send the zip file to the client as a downloadable file
return fastapi.responses.StreamingResponse(
iter([zip_buffer.getvalue()]), # Stream the in-memory content
media_type="application/zip",
headers={"Content-Disposition": "attachment; filename=enhanced_audio_files.zip"}
)
except Exception as e:
# Log the error if needed, and raise an HTTPException to inform the client
raise fastapi.HTTPException(status_code=500, detail=f"An error occurred while creating the download file: {str(e)}")
def run(self):
uvicorn.run(self.app, host=self.host, port=self.port) |