Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,132 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
# Model Card for
|
7 |
|
8 |
-
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
## Model Details
|
13 |
-
|
14 |
-
### Model Description
|
15 |
-
|
16 |
-
<!-- Provide a longer summary of what this model is. -->
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
|
76 |
## Training Details
|
|
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
|
145 |
-
|
146 |
|
147 |
-
-
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
|
153 |
-
|
154 |
|
155 |
-
|
156 |
|
157 |
-
|
158 |
|
159 |
-
|
160 |
|
161 |
-
|
162 |
|
163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
|
165 |
-
[More Information Needed]
|
166 |
|
167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
|
169 |
-
[More Information Needed]
|
170 |
|
171 |
-
|
172 |
|
173 |
-
|
|
|
|
|
|
|
|
|
|
|
174 |
|
175 |
-
|
|
|
|
|
176 |
|
177 |
-
|
|
|
|
|
|
|
178 |
|
179 |
-
|
|
|
|
|
|
|
|
|
|
|
180 |
|
181 |
-
|
182 |
|
183 |
-
|
184 |
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
|
187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
189 |
-
|
190 |
|
191 |
-
|
192 |
|
193 |
-
## Model Card Authors [optional]
|
194 |
|
195 |
-
|
|
|
196 |
|
197 |
-
|
198 |
|
199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
license: mit
|
3 |
+
pipeline_tag: image-feature-extraction
|
4 |
+
tags:
|
5 |
+
- pretrained
|
6 |
+
datasets:
|
7 |
+
- ylecun/mnist
|
8 |
---
|
9 |
|
10 |
+
# Model Card for Llava-mnist
|
11 |
|
12 |
+
This model is a simple linear layer vision encoder trained on the MNIST dataset, following the Llava training approach.
|
13 |
|
14 |
+
You can use this model alongside [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
## Training Details
|
17 |
+
The model was trained on the *chat-style* MNIST dataset, which is structured as follows:
|
18 |
|
19 |
+
prompt: “\<image\>What digit is this?”
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
output: "The digit is {label}."
|
22 |
|
23 |
+
The Llava-MNIST model transforms the digit image into an embedding vector that resides in the same space as the text token embedding.
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
The loss function optimized during training is defined as:
|
26 |
|
27 |
+
$L(W)= -\log P_W(This digit is \{label\}|\<image\>What digit is this?)$
|
28 |
|
29 |
+
During training, the parameters of the Llama 3.1 model are kept frozen, and only the parameters of the vision encoder (Llava-MNIST) are optimized.
|
30 |
|
31 |
+
## How to use
|
32 |
|
33 |
+
You can input multi-modal data (vision and text) into the Llama 3.1 model by using the Llava-MNIST model as the vision encoder.
|
34 |
|
35 |
+
```
|
36 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
37 |
+
import torch
|
38 |
+
from datasets import load_dataset
|
39 |
+
from torchvision import transforms
|
40 |
+
import util
|
41 |
+
from transformers import AutoModel
|
42 |
|
|
|
43 |
|
44 |
+
def build_multi_modal_prompt(
|
45 |
+
prompt: str,
|
46 |
+
image: torch.Tensor,
|
47 |
+
tokenizer: AutoTokenizer,
|
48 |
+
model: AutoModelForCausalLM,
|
49 |
+
vision_model: AutoModel,
|
50 |
+
) -> torch.Tensor:
|
51 |
+
parts = prompt.split("<image>")
|
52 |
+
prefix = tokenizer(parts[0])
|
53 |
+
suffix = tokenizer(parts[1])
|
54 |
+
prefix_embedding = model.get_input_embeddings()(torch.tensor(prefix["input_ids"]))
|
55 |
+
suffix_embedding = model.get_input_embeddings()(torch.tensor(suffix["input_ids"]))
|
56 |
+
image_embedding = vision_model(image).to(torch.bfloat16).to(model.device)
|
57 |
+
multi_modal_embedding = torch.cat(
|
58 |
+
[prefix_embedding, image_embedding, suffix_embedding], dim=0
|
59 |
+
)
|
60 |
+
return multi_modal_embedding
|
61 |
|
|
|
62 |
|
63 |
+
model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
|
64 |
|
65 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
66 |
+
model = AutoModelForCausalLM.from_pretrained(
|
67 |
+
model_id,
|
68 |
+
torch_dtype=torch.bfloat16,
|
69 |
+
device_map="auto",
|
70 |
+
)
|
71 |
|
72 |
+
vision_model = AutoModel.from_pretrained(
|
73 |
+
"speed/llava-mnist", trust_remote_code=True
|
74 |
+
)
|
75 |
|
76 |
+
terminators = [
|
77 |
+
tokenizer.eos_token_id,
|
78 |
+
tokenizer.convert_tokens_to_ids("<|eot_id|>"),
|
79 |
+
]
|
80 |
|
81 |
+
system_prompt = (
|
82 |
+
"<|begin_of_text|><|start_header_id|>system<|end_header_id|><|eot_id|>"
|
83 |
+
)
|
84 |
+
user_prompt = "<|start_header_id|>user<|end_header_id|>"
|
85 |
+
question = "<image>What digit is this?"
|
86 |
+
assistant_prompt = "<|start_header_id|>assistant<|end_header_id|>"
|
87 |
|
88 |
+
prompt = system_prompt + user_prompt + question + assistant_prompt
|
89 |
|
90 |
+
ds = load_dataset("ylecun/mnist", split="test")
|
91 |
|
|
|
92 |
|
93 |
+
def transform_image(examples):
|
94 |
+
transform = transforms.Compose(
|
95 |
+
[
|
96 |
+
transforms.ToTensor(),
|
97 |
+
transforms.Normalize((0.1307,), (0.3081,)),
|
98 |
+
transforms.Lambda(lambda x: torch.flatten(x)),
|
99 |
+
]
|
100 |
+
)
|
101 |
+
examples["pixel_values"] = [transform(image) for image in examples["image"]]
|
102 |
|
103 |
+
return examples
|
104 |
|
105 |
+
ds.set_transform(transform = transform_image)
|
106 |
|
|
|
107 |
|
108 |
+
model.eval()
|
109 |
+
vision_model.eval()
|
110 |
|
111 |
+
example = ds[0]
|
112 |
|
113 |
+
input_embeded = util.build_multi_modal_prompt(
|
114 |
+
prompt, example["pixel_values"].unsqueeze(0), tokenizer, model, vision_model
|
115 |
+
).unsqueeze(0)
|
116 |
+
response = model.generate(
|
117 |
+
inputs_embeds=input_embeded,
|
118 |
+
max_new_tokens=20,
|
119 |
+
eos_token_id=terminators,
|
120 |
+
do_sample=True,
|
121 |
+
temperature=0.6,
|
122 |
+
top_p=0.9,
|
123 |
+
)
|
124 |
+
response = response[0]
|
125 |
+
print("Label:", example["label"]) # Label: 7
|
126 |
+
answer = tokenizer.decode(response, skip_special_tokens=True)
|
127 |
+
print("Answer:", answer) # Answer: The digit is 7.
|
128 |
+
|
129 |
+
```
|
130 |
+
|
131 |
+
## References
|
132 |
+
- Liu et al., LLaVA: Large Language and Vision Assistant, https://llava-vl.github.io/
|