speed commited on
Commit
6103f29
·
verified ·
1 Parent(s): 1822777

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +98 -165
README.md CHANGED
@@ -1,199 +1,132 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
 
76
  ## Training Details
 
77
 
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
- ### Model Architecture and Objective
156
 
157
- [More Information Needed]
158
 
159
- ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
 
163
- #### Hardware
 
 
 
 
 
 
164
 
165
- [More Information Needed]
166
 
167
- #### Software
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
168
 
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
 
 
 
 
 
174
 
175
- **BibTeX:**
 
 
176
 
177
- [More Information Needed]
 
 
 
178
 
179
- **APA:**
 
 
 
 
 
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
 
 
 
 
 
 
 
 
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
 
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: mit
3
+ pipeline_tag: image-feature-extraction
4
+ tags:
5
+ - pretrained
6
+ datasets:
7
+ - ylecun/mnist
8
  ---
9
 
10
+ # Model Card for Llava-mnist
11
 
12
+ This model is a simple linear layer vision encoder trained on the MNIST dataset, following the Llava training approach.
13
 
14
+ You can use this model alongside [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
  ## Training Details
17
+ The model was trained on the *chat-style* MNIST dataset, which is structured as follows:
18
 
19
+ prompt: “\<image\>What digit is this?”
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
+ output: "The digit is {label}."
22
 
23
+ The Llava-MNIST model transforms the digit image into an embedding vector that resides in the same space as the text token embedding.
 
 
 
 
24
 
25
+ The loss function optimized during training is defined as:
26
 
27
+ $L(W)= -\log P_W(This digit is \{label\}|\<image\>What digit is this?)$
28
 
29
+ During training, the parameters of the Llama 3.1 model are kept frozen, and only the parameters of the vision encoder (Llava-MNIST) are optimized.
30
 
31
+ ## How to use
32
 
33
+ You can input multi-modal data (vision and text) into the Llama 3.1 model by using the Llava-MNIST model as the vision encoder.
34
 
35
+ ```
36
+ from transformers import AutoTokenizer, AutoModelForCausalLM
37
+ import torch
38
+ from datasets import load_dataset
39
+ from torchvision import transforms
40
+ import util
41
+ from transformers import AutoModel
42
 
 
43
 
44
+ def build_multi_modal_prompt(
45
+ prompt: str,
46
+ image: torch.Tensor,
47
+ tokenizer: AutoTokenizer,
48
+ model: AutoModelForCausalLM,
49
+ vision_model: AutoModel,
50
+ ) -> torch.Tensor:
51
+ parts = prompt.split("<image>")
52
+ prefix = tokenizer(parts[0])
53
+ suffix = tokenizer(parts[1])
54
+ prefix_embedding = model.get_input_embeddings()(torch.tensor(prefix["input_ids"]))
55
+ suffix_embedding = model.get_input_embeddings()(torch.tensor(suffix["input_ids"]))
56
+ image_embedding = vision_model(image).to(torch.bfloat16).to(model.device)
57
+ multi_modal_embedding = torch.cat(
58
+ [prefix_embedding, image_embedding, suffix_embedding], dim=0
59
+ )
60
+ return multi_modal_embedding
61
 
 
62
 
63
+ model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
64
 
65
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
66
+ model = AutoModelForCausalLM.from_pretrained(
67
+ model_id,
68
+ torch_dtype=torch.bfloat16,
69
+ device_map="auto",
70
+ )
71
 
72
+ vision_model = AutoModel.from_pretrained(
73
+ "speed/llava-mnist", trust_remote_code=True
74
+ )
75
 
76
+ terminators = [
77
+ tokenizer.eos_token_id,
78
+ tokenizer.convert_tokens_to_ids("<|eot_id|>"),
79
+ ]
80
 
81
+ system_prompt = (
82
+ "<|begin_of_text|><|start_header_id|>system<|end_header_id|><|eot_id|>"
83
+ )
84
+ user_prompt = "<|start_header_id|>user<|end_header_id|>"
85
+ question = "<image>What digit is this?"
86
+ assistant_prompt = "<|start_header_id|>assistant<|end_header_id|>"
87
 
88
+ prompt = system_prompt + user_prompt + question + assistant_prompt
89
 
90
+ ds = load_dataset("ylecun/mnist", split="test")
91
 
 
92
 
93
+ def transform_image(examples):
94
+ transform = transforms.Compose(
95
+ [
96
+ transforms.ToTensor(),
97
+ transforms.Normalize((0.1307,), (0.3081,)),
98
+ transforms.Lambda(lambda x: torch.flatten(x)),
99
+ ]
100
+ )
101
+ examples["pixel_values"] = [transform(image) for image in examples["image"]]
102
 
103
+ return examples
104
 
105
+ ds.set_transform(transform = transform_image)
106
 
 
107
 
108
+ model.eval()
109
+ vision_model.eval()
110
 
111
+ example = ds[0]
112
 
113
+ input_embeded = util.build_multi_modal_prompt(
114
+ prompt, example["pixel_values"].unsqueeze(0), tokenizer, model, vision_model
115
+ ).unsqueeze(0)
116
+ response = model.generate(
117
+ inputs_embeds=input_embeded,
118
+ max_new_tokens=20,
119
+ eos_token_id=terminators,
120
+ do_sample=True,
121
+ temperature=0.6,
122
+ top_p=0.9,
123
+ )
124
+ response = response[0]
125
+ print("Label:", example["label"]) # Label: 7
126
+ answer = tokenizer.decode(response, skip_special_tokens=True)
127
+ print("Answer:", answer) # Answer: The digit is 7.
128
+
129
+ ```
130
+
131
+ ## References
132
+ - Liu et al., LLaVA: Large Language and Vision Assistant, https://llava-vl.github.io/