--- language: - zh license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_9_0 model-index: - name: Whisper small zh - foriegn results: [] --- # Whisper small zh - foriegn This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 9 dataset. It achieves the following results on the evaluation set: - Loss: 0.2235 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.2446 | 0.36 | 500 | 0.3424 | | 0.3316 | 0.73 | 1000 | 0.3260 | | 0.2777 | 1.09 | 1500 | 0.2939 | | 0.1808 | 1.45 | 2000 | 0.2944 | | 0.1822 | 1.82 | 2500 | 0.2589 | | 0.1206 | 2.18 | 3000 | 0.2468 | | 0.0715 | 2.54 | 3500 | 0.2319 | | 0.0642 | 2.91 | 4000 | 0.2235 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0