File size: 1,363 Bytes
c1dc7e0 92f435d c1dc7e0 6d8bbad c1dc7e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import torch.nn as nn
from transformers import PreTrainedModel
from .configuration_spice_cnn import SpiceCNNConfig
class SpiceCNNModelForImageClassification(PreTrainedModel):
config_class = SpiceCNNConfig
def __init__(self, config: SpiceCNNConfig):
super().__init__(config)
layers = [
nn.Conv2d(
3,
32,
kernel_size=config.kernel_size,
stride=config.stride,
padding=config.padding,
),
nn.ReLU(),
nn.MaxPool2d(kernel_size=config.pooling_size),
nn.Conv2d(
32,
64,
kernel_size=config.kernel_size,
stride=config.stride,
padding=config.padding,
),
nn.ReLU(),
nn.MaxPool2d(kernel_size=config.pooling_size),
nn.Flatten(),
nn.Linear(7 * 7 * 64, 128),
nn.ReLU(),
nn.Linear(128, config.num_classes),
]
self.model = nn.Sequential(*layers)
def forward(self, tensor, labels=None):
logits = self.model(tensor)
if labels is not None:
loss_fnc = nn.CrossEntropyLoss()
loss = loss_fnc(logits, labels)
return {"loss": loss, "logits": logits}
return {"logits": logits}
|