Upload modeling_spice_cnn.py with huggingface_hub
Browse files- modeling_spice_cnn.py +49 -0
modeling_spice_cnn.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
|
3 |
+
# from torchsummary import summary
|
4 |
+
|
5 |
+
from transformers import PreTrainedModel
|
6 |
+
|
7 |
+
from .configuration_spice_cnn import SpiceCNNConfig
|
8 |
+
|
9 |
+
|
10 |
+
class SpiceCNNModelForImageClassification(PreTrainedModel):
|
11 |
+
config_class = SpiceCNNConfig
|
12 |
+
|
13 |
+
def __init__(self, config: SpiceCNNConfig):
|
14 |
+
super().__init__(config)
|
15 |
+
layers = [
|
16 |
+
nn.Conv2d(
|
17 |
+
config.in_channels, 16, kernel_size=config.kernel_size, padding=1
|
18 |
+
),
|
19 |
+
nn.BatchNorm2d(16),
|
20 |
+
nn.ReLU(),
|
21 |
+
nn.MaxPool2d(kernel_size=config.pooling_size),
|
22 |
+
nn.Conv2d(16, 32, kernel_size=config.kernel_size, padding=1),
|
23 |
+
nn.BatchNorm2d(32),
|
24 |
+
nn.ReLU(),
|
25 |
+
nn.MaxPool2d(kernel_size=config.pooling_size),
|
26 |
+
nn.Conv2d(32, 64, kernel_size=config.kernel_size, padding=1),
|
27 |
+
nn.BatchNorm2d(64),
|
28 |
+
nn.ReLU(),
|
29 |
+
nn.MaxPool2d(kernel_size=config.pooling_size),
|
30 |
+
nn.Flatten(),
|
31 |
+
nn.Linear(64 * 3 * 3, 128),
|
32 |
+
nn.ReLU(),
|
33 |
+
nn.Dropout(0.5),
|
34 |
+
nn.Linear(128, config.num_classes),
|
35 |
+
]
|
36 |
+
self.model = nn.Sequential(*layers)
|
37 |
+
|
38 |
+
def forward(self, tensor, labels=None):
|
39 |
+
logits = self.model(tensor)
|
40 |
+
if labels is not None:
|
41 |
+
loss_fnc = nn.CrossEntropyLoss()
|
42 |
+
loss = loss_fnc(logits, labels)
|
43 |
+
return {"loss": loss, "logits": logits}
|
44 |
+
return {"logits": logits}
|
45 |
+
|
46 |
+
|
47 |
+
# config = SpiceCNNConfig(in_channels=1)
|
48 |
+
# cnn = SpiceCNNModelForImageClassification(config)
|
49 |
+
# summary(cnn, (1,28,28))
|