File size: 947 Bytes
bcf646b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import torch
from torch.utils.data import Dataset

import numpy as np


class load_ECG_Dataset(Dataset):
    # Initialize dataset
    def __init__(self, dataset):

        # Load sample
        x_data = dataset["samples"]
        # Convert to pytorch tensor
        if isinstance(x_data, np.ndarray):
            x_data = torch.from_numpy(x_data)

        # Load labels
        y_data = dataset.get("labels")
        if y_data is not None and isinstance(y_data, np.ndarray):
            y_data = torch.from_numpy(y_data)

        self.x_data = x_data.float()
        self.y_data = y_data.long() if y_data is not None else None

        self.len = x_data.shape[0]

    def get_labels(self):
        return self.y_data

    def __getitem__(self, idx):
        sample = {
            'samples': self.x_data[idx].squeeze(-1),
            'labels': int(self.y_data[idx])
        }
        return sample

    def __len__(self):
        return self.len