File size: 2,025 Bytes
93d78fc f3cf31a c6b175a f3cf31a b4043d3 93d78fc c6b175a 93d78fc b4043d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: food-vit-tutorial
results:
- task:
name: image-classification
type: image-classification
dataset:
name: food101
type: food101
config: default
split: train
args: default
metrics:
- name: accuracy
type: accuracy
value: 0.916
datasets:
- food101
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# food-vit-tutorial
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on food101 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0267
- Accuracy: 0.916
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.7889 | 0.99 | 62 | 2.5577 | 0.838 |
| 1.7142 | 2.0 | 125 | 1.6126 | 0.879 |
| 1.2887 | 2.99 | 187 | 1.2513 | 0.903 |
| 1.0307 | 4.0 | 250 | 1.0673 | 0.922 |
| 1.0022 | 4.96 | 310 | 1.0267 | 0.916 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0 |