--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer metrics: - accuracy model-index: - name: food-vit-tutorial results: - task: name: image-classification type: image-classification dataset: name: food101 type: food101 config: default split: train args: default metrics: - name: accuracy type: accuracy value: 0.916 datasets: - food101 library_name: transformers.js --- # food-vit-tutorial This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on food101 dataset. It achieves the following results on the evaluation set: - Loss: 1.0267 - Accuracy: 0.916 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7889 | 0.99 | 62 | 2.5577 | 0.838 | | 1.7142 | 2.0 | 125 | 1.6126 | 0.879 | | 1.2887 | 2.99 | 187 | 1.2513 | 0.903 | | 1.0307 | 4.0 | 250 | 1.0673 | 0.922 | | 1.0022 | 4.96 | 310 | 1.0267 | 0.916 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0