sproos commited on
Commit
3129965
·
1 Parent(s): c09a69e

Create handler.py

Browse files
Files changed (1) hide show
  1. handler.py +91 -0
handler.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from typing import Dict, List, Any
3
+ import torch.nn as nn
4
+ from transformers import GPT2LMHeadModel, GPT2Config, GPT2Tokenizer, PreTrainedModel
5
+ from transformers.modeling_outputs import CausalLMOutput
6
+ import torch.nn as nn
7
+ import torch
8
+ import torch.nn.functional as F
9
+ # # get dtype
10
+ # dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16
11
+
12
+ class CustomGPT2Model(PreTrainedModel):
13
+ def __init__(self, config):
14
+ super(CustomGPT2Model, self).__init__(config)
15
+
16
+ self.gpt2 = GPT2LMHeadModel.from_pretrained('gpt2-medium')
17
+ # Create an MLP layer to transform the ada-002 embedding to the GPT-2 hidden size
18
+ self.mlp = nn.Sequential(
19
+ nn.Linear(1536, 768), # Adjust the hidden layer size as necessary
20
+ nn.ReLU(),
21
+ nn.Linear(768, config.n_embd) # Adjust the output size to match GPT-2 embedding size
22
+ )
23
+
24
+
25
+
26
+ def forward(self, inputs=None, ada_embedding=None, decoded_tkns=None, labels=None):
27
+ emb = self.mlp(ada_embedding)
28
+ emb = emb.unsqueeze(1)
29
+
30
+ if decoded_tkns is not None:
31
+ # Add the "encoded:" prefix, ada-002 embedding, "decoded:" prefix, and the decoded token
32
+ decoded_tkns = torch.cat([emb, self.gpt2.transformer.wte(decoded_tkns)], dim=1)
33
+ else:
34
+ decoded_tkns = emb
35
+
36
+ # Create the position ids
37
+ position_ids = torch.arange(0, decoded_tkns.size(1), dtype=torch.long).unsqueeze(0).to(emb.device)
38
+ # Forward the embeddings through the GPT-2 model with the correct position ids
39
+ outputs = self.gpt2(inputs_embeds=decoded_tkns, position_ids=position_ids)
40
+ logits = outputs.logits
41
+
42
+ loss = None
43
+ if labels is not None:
44
+ loss_fct = CrossEntropyLoss()
45
+ loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
46
+
47
+ return CausalLMOutput(loss, logits, outputs.hidden_states)
48
+
49
+
50
+ class EndpointHandler:
51
+ def __init__(self, path=""):
52
+ # load the model
53
+ # Load the GPT-2 configuration
54
+ self.config = GPT2Config.from_pretrained('gpt2-medium')
55
+
56
+ # Create the custom GPT-2 model and load the trained weights
57
+ self.model = CustomGPT2Model.from_pretrained(path, config=self.config)
58
+
59
+ # Load the tokenizer
60
+ self.tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium')
61
+
62
+
63
+ def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
64
+ embedding = data.pop("embedding", None)
65
+ max_length=200
66
+ with torch.no_grad():
67
+ outputs = self.model(ada_embedding=embedding, decoded_tkns=None)
68
+ decoded_tkns = outputs.logits.argmax(dim=-1)
69
+
70
+ for _ in range(max_length):
71
+ with torch.no_grad():
72
+ outputs = self.model(ada_embedding=embedding, decoded_tkns=decoded_tkns)
73
+
74
+ # Get the most likely next token, sampled from top k
75
+ logits = outputs.logits[:, -1]
76
+ top_k_logits, top_k_indices = torch.topk(logits, k = 5)
77
+ next_token = torch.multinomial(F.softmax(top_k_logits, dim=-1), num_samples=1)
78
+ next_token = top_k_indices.gather(dim=1, index=next_token)
79
+
80
+ if next_token[0].item() == self.tokenizer.eos_token_id:
81
+ break
82
+
83
+ decoded_tkns = torch.cat((decoded_tkns, next_token), dim=1)
84
+
85
+ # Convert the tensor of token IDs to a list of token IDs
86
+ token_ids = decoded_tkns[0].cpu().numpy().tolist()
87
+
88
+ # Decode the token IDs back to a string
89
+ output_text = self.tokenizer.decode(token_ids, skip_special_tokens=True)
90
+
91
+ return output_text