sreeramajay
commited on
Commit
·
ca99adc
1
Parent(s):
37cb0bd
added usage
Browse files
README.md
CHANGED
@@ -1,3 +1,64 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
+
How to use:
|
5 |
+
```
|
6 |
+
import torch
|
7 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
8 |
+
|
9 |
+
# Load Base Model
|
10 |
+
base_model_id = "mistralai/Mistral-7B-v0.1"
|
11 |
+
bnb_config = BitsAndBytesConfig(
|
12 |
+
load_in_4bit=True,
|
13 |
+
bnb_4bit_use_double_quant=True,
|
14 |
+
bnb_4bit_quant_type="nf4",
|
15 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
16 |
+
)
|
17 |
+
|
18 |
+
model = AutoModelForCausalLM.from_pretrained(base_model_id, quantization_config=bnb_config)
|
19 |
+
|
20 |
+
eval_tokenizer = AutoTokenizer.from_pretrained(
|
21 |
+
base_model_id,
|
22 |
+
add_bos_token=True,
|
23 |
+
trust_remote_code=True,
|
24 |
+
)
|
25 |
+
eval_tokenizer.pad_token = eval_tokenizer.eos_token
|
26 |
+
|
27 |
+
# Load Peft Weights
|
28 |
+
from peft import PeftModel
|
29 |
+
|
30 |
+
ft_model = PeftModel.from_pretrained(model, "mistral-samsum-finetune/checkpoint-100")
|
31 |
+
|
32 |
+
# Format the Sample Input
|
33 |
+
def formatting_func(example):
|
34 |
+
text = f"### Summarize this dialog:\n{example['dialogue']}\n### Summary:\n{example['summary']}"
|
35 |
+
return text
|
36 |
+
|
37 |
+
max_length = 256
|
38 |
+
eval_prompt = {'dialogue': "Amanda: I baked cookies. Do you want some? Jerry: Sure! Amanda: I'll bring you tomorrow :-)",
|
39 |
+
'summary': ''}
|
40 |
+
eval_prompt = formatting_func(eval_prompt)
|
41 |
+
|
42 |
+
# Generate summary for sample Input
|
43 |
+
model_input = eval_tokenizer(
|
44 |
+
eval_prompt,
|
45 |
+
truncation=True,
|
46 |
+
max_length=max_length,
|
47 |
+
padding="max_length",
|
48 |
+
return_tensors="pt").to("cuda")
|
49 |
+
|
50 |
+
ft_model.eval()
|
51 |
+
with torch.no_grad():
|
52 |
+
print(eval_tokenizer.decode(ft_model.generate(**model_input,
|
53 |
+
max_new_tokens=256,
|
54 |
+
repetition_penalty=1.15)[0],
|
55 |
+
skip_special_tokens=True))
|
56 |
+
|
57 |
+
# here is the output:
|
58 |
+
"""
|
59 |
+
### Summarize this dialog:
|
60 |
+
Amanda: I baked cookies. Do you want some? Jerry: Sure! Amanda: I'll bring you tomorrow :-)
|
61 |
+
### Summary:
|
62 |
+
Jerry will get some cookies from Amanda tomorrow.
|
63 |
+
"""
|
64 |
+
```
|