Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,75 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
4 |
---
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
|
|
|
10 |
|
|
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
-
###
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
- **
|
21 |
-
|
22 |
-
|
23 |
-
- **
|
24 |
-
- **
|
25 |
-
- **
|
26 |
-
- **
|
27 |
-
|
28 |
-
###
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
- **
|
33 |
-
- **
|
34 |
-
- **
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
|
185 |
-
|
186 |
|
187 |
-
|
188 |
|
189 |
-
|
|
|
|
|
|
|
190 |
|
191 |
-
|
|
|
|
|
192 |
|
193 |
-
|
|
|
|
|
|
|
|
|
|
|
194 |
|
195 |
-
|
|
|
|
|
196 |
|
197 |
-
|
|
|
198 |
|
199 |
-
|
|
|
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model:
|
5 |
+
- openai-community/gpt2
|
6 |
---
|
7 |
+
# Fine-Tuned GPT-2 for Sentiment Analysis
|
8 |
|
9 |
+
## Model Description
|
|
|
|
|
10 |
|
11 |
+
This is a fine-tuned version of the GPT-2 model for sentiment analysis on tweets. The model has been trained on the `mteb/tweet_sentiment_extraction` dataset to classify tweets into three sentiment categories: **Positive**, **Neutral**, and **Negative**. It uses the Hugging Face Transformers library and achieves an evaluation accuracy of **76%**.
|
12 |
|
13 |
+
---
|
14 |
|
15 |
## Model Details
|
16 |
|
17 |
+
### Developer/Owner
|
18 |
+
- **Creator**: KUSURU SRESHTA
|
19 |
+
- **Contact**: kusurusreshta@gmail.com
|
20 |
+
|
21 |
+
### Model Type
|
22 |
+
- **Architecture**: GPT-2
|
23 |
+
- **Fine-Tuned Task**: Sentiment Analysis
|
24 |
+
|
25 |
+
### Dataset
|
26 |
+
- **Name**: `mteb/tweet_sentiment_extraction`
|
27 |
+
- **Description**: A dataset for extracting and classifying sentiment in tweets.
|
28 |
+
- **Language**: English
|
29 |
+
- **Size**: 1,000 samples used for training and 1,000 for evaluation.
|
30 |
+
|
31 |
+
### Training Configuration
|
32 |
+
- **Tokenizer**: GPT-2 Tokenizer (with EOS token as pad token)
|
33 |
+
- **Optimizer**: AdamW
|
34 |
+
- **Learning Rate**: 1e-5
|
35 |
+
- **Epochs**: 3
|
36 |
+
- **Batch Size**: 1
|
37 |
+
- **Hardware Used**: A100
|
38 |
+
|
39 |
+
### Performance
|
40 |
+
- **Accuracy**: 76%
|
41 |
+
- **Evaluation Metric**: Accuracy
|
42 |
+
- **Validation Split**: 10% of the dataset.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
## Usage
|
47 |
|
48 |
+
This model is designed for sentiment analysis of tweets or other short social media text. Given an input text, it predicts the sentiment as Positive, Neutral, or Negative.
|
49 |
|
50 |
+
### Example Code
|
51 |
+
```python
|
52 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
53 |
+
import torch
|
54 |
|
55 |
+
# Load the model and tokenizer
|
56 |
+
tokenizer = AutoTokenizer.from_pretrained("charlie1898/gpt2_finetuned_twitter_sentiment_analysis")
|
57 |
+
model = AutoModelForSequenceClassification.from_pretrained("charlie1898/gpt2_finetuned_twitter_sentiment_analysis")
|
58 |
|
59 |
+
# Example input
|
60 |
+
text = "I love using Hugging Face models!"
|
61 |
+
inputs = tokenizer(text, return_tensors="pt")
|
62 |
+
outputs = model(**inputs)
|
63 |
+
predicted_class = torch.argmax(outputs.logits).item()
|
64 |
+
print(f"Predicted sentiment class: {predicted_class}")
|
65 |
|
66 |
+
# Limitations
|
67 |
+
- ** Bias **: The dataset may contain biased or harmful text, potentially influencing predictions.
|
68 |
+
- ** Domain Limitations **: Optimized for English tweets; performance may degrade on other text types or languages.
|
69 |
|
70 |
+
# Ethical Considerations
|
71 |
+
This model should be used responsibly. Be aware of biases in the training data and avoid deploying the model in sensitive or high-stakes applications without further validation.
|
72 |
|
73 |
+
# Acknowledgments
|
74 |
+
- Hugging Face Transformers library
|
75 |
+
- mteb/tweet_sentiment_extraction dataset
|