--- library_name: peft language: - th license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: Whisper Large v3 Thai Finetuned results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_17_0 config: th split: None args: 'config: th, split: train' metrics: - type: wer value: 37.2840522511834 name: Wer --- # Whisper Large v3 Thai Finetuned This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1197 - Cer: 347.2750 - Wer: 37.2841 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | Wer | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------:| | 0.1468 | 1.0 | 2052 | 0.1265 | 348.7140 | 42.3821 | | 0.1225 | 2.0 | 4104 | 0.1178 | 387.4029 | 34.6267 | | 0.0914 | 3.0 | 6156 | 0.1157 | 368.2561 | 36.4184 | | 0.0779 | 4.0 | 8208 | 0.1182 | 347.7405 | 36.8434 | | 0.0624 | 5.0 | 10260 | 0.1197 | 347.2750 | 37.2841 | ### Framework versions - PEFT 0.14.1.dev0 - Transformers 4.49.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0