Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,113 @@
|
|
1 |
-
---
|
2 |
-
license:
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
language: ddn
|
4 |
+
metrics:
|
5 |
+
- wer
|
6 |
+
tags:
|
7 |
+
- text-to-audio
|
8 |
+
- automatic-speech-recognition
|
9 |
+
- wav2vec2-fine-tuning
|
10 |
+
- dendi-text-to-speech
|
11 |
+
model-index:
|
12 |
+
- name: Dendi Numerals ASR
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
name: Speech Recognition
|
16 |
+
type: automatic-speech-recognition
|
17 |
+
dataset:
|
18 |
+
name: dendi
|
19 |
+
type: dendi_numbers_dataset
|
20 |
+
metrics:
|
21 |
+
- name: Test WER
|
22 |
+
type: wer
|
23 |
+
value: 18.18
|
24 |
+
pipeline_tag: automatic-speech-recognition
|
25 |
+
---
|
26 |
+
|
27 |
+
# CreaTiv Team (CTT): Dendi Numerals Automatic Speech Recognition
|
28 |
+
|
29 |
+
This repository contains an Automatic Speech Recognition (ASR) model specifically for recognizing numerals in the Dendi (ddn) language.
|
30 |
+
The model can accurately recognize numbers ranging from 0 to 1,000,000,000 when spoken in Dendi.
|
31 |
+
|
32 |
+
This model is part of Creativ Team's [Noulinmon](https://noulinmon.baruwuu.bj/) project, a user-friendly mobile app designed to make calculations accessible in six local languages of Benin, featuring voice reading and AI capabilities.
|
33 |
+
You can find more CTT-ASR models on the Hugging Face Hub: [ssid32/ctt-asr](https://huggingface.co/models?sort=trending&search=ssid32).
|
34 |
+
|
35 |
+
CTT-ASR is available in the 🤗 Transformers library from version 4.4 onwards.
|
36 |
+
|
37 |
+
## Model Details
|
38 |
+
|
39 |
+
The model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Dendi.
|
40 |
+
When using this model, make sure that your speech input is sampled at 16kHz.
|
41 |
+
|
42 |
+
|
43 |
+
## Usage
|
44 |
+
|
45 |
+
To use this model, first install the latest version of 🤗 Transformers library:
|
46 |
+
|
47 |
+
```
|
48 |
+
pip install --upgrade transformers accelerate
|
49 |
+
```
|
50 |
+
|
51 |
+
Then, run inference with the following code-snippet:
|
52 |
+
|
53 |
+
```python
|
54 |
+
import torch
|
55 |
+
import torchaudio
|
56 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
57 |
+
|
58 |
+
processor = Wav2Vec2Processor.from_pretrained("ssid32/wav2vec2-xlsr-dendi-ddn-for-numerals")
|
59 |
+
model = Wav2Vec2ForCTC.from_pretrained("ssid32/wav2vec2-xlsr-dendi-ddn-for-numerals")
|
60 |
+
|
61 |
+
speech_array, sampling_rate = torchaudio.load("audio_test.wav")
|
62 |
+
speech_array = speech_array.squeeze().numpy()
|
63 |
+
inputs = processor(speech_array, sampling_rate=16_000, return_tensors="pt", padding=True)
|
64 |
+
|
65 |
+
with torch.no_grad():
|
66 |
+
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
67 |
+
output = processor.batch_decode(torch.argmax(logits, dim=-1))
|
68 |
+
|
69 |
+
print("Output:", output)
|
70 |
+
|
71 |
+
```
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
You can listen to the sample audio here:
|
76 |
+
|
77 |
+
<audio controls>
|
78 |
+
<source src="https://huggingface.co/ssid32/wav2vec2-xlsr-dendi-ddn-for-numerals/resolve/main/audio_test.wav" type="audio/wav">
|
79 |
+
Your browser does not support the audio element.
|
80 |
+
</audio>
|
81 |
+
|
82 |
+
Upon processing the sample audio, the model produces the following output:
|
83 |
+
|
84 |
+
```
|
85 |
+
Output: ['zangu ihaaku nda weiguu']
|
86 |
+
```
|
87 |
+
|
88 |
+
### Evaluation result
|
89 |
+
|
90 |
+
The model's performance on a test set yields a Word Error Rate (WER) of **18.18**%.
|
91 |
+
|
92 |
+
## Authors
|
93 |
+
|
94 |
+
This model was developed by:
|
95 |
+
- Salim KORA GUERA (HuggingFace Username: [ssid32](https://huggingface.co/ssid32)) | ([email protected])
|
96 |
+
- Etienne TOVIMAFA (HuggingFace Username: [MrBendji](https://huggingface.co/MrBendji)) | ([email protected])
|
97 |
+
|
98 |
+
## Citation
|
99 |
+
|
100 |
+
```bibtex
|
101 |
+
@misc {
|
102 |
+
author = { {Salim KORA GUERA and Etienne TOVIMAFA} },
|
103 |
+
title = { wav2vec2-xlsr-dendi-ddn-for-numerals },
|
104 |
+
year = 2024,
|
105 |
+
url = { https://huggingface.co/ssid32/wav2vec2-xlsr-dendi-ddn-for-numerals },
|
106 |
+
doi = { 10.57967/hf/2930 },
|
107 |
+
publisher = { Hugging Face }
|
108 |
+
}
|
109 |
+
```
|
110 |
+
|
111 |
+
## License
|
112 |
+
|
113 |
+
The model is licensed as **CC-BY-NC 4.0**.
|