nikhilpinnaparaju
commited on
Commit
•
102d1e9
1
Parent(s):
35a71f9
Update README.md
Browse files
README.md
CHANGED
@@ -16,11 +16,11 @@ metrics:
|
|
16 |
- code_eval
|
17 |
library_name: transformers
|
18 |
---
|
19 |
-
# `stable-code-
|
20 |
|
21 |
## Model Description
|
22 |
|
23 |
-
`stable-code-
|
24 |
|
25 |
**Key Features**
|
26 |
* Fill in Middle Capability (FIM)
|
@@ -28,23 +28,19 @@ library_name: transformers
|
|
28 |
|
29 |
## Usage
|
30 |
|
31 |
-
Get started generating text with `stable-code-
|
32 |
|
33 |
```python
|
34 |
import torch
|
35 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
36 |
-
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stable-code-
|
37 |
model = AutoModelForCausalLM.from_pretrained(
|
38 |
-
"stabilityai/stable-code-
|
39 |
trust_remote_code=True,
|
40 |
torch_dtype="auto",
|
41 |
)
|
42 |
-
|
43 |
-
|
44 |
-
if torch.cuda.is_available():
|
45 |
-
device = "cuda"
|
46 |
-
|
47 |
-
inputs = tokenizer("import torch\nimport torch.nn as nn", return_tensors="pt").to(device)
|
48 |
tokens = model.generate(
|
49 |
**inputs,
|
50 |
max_new_tokens=48,
|
@@ -61,19 +57,15 @@ print(tokenizer.decode(tokens[0], skip_special_tokens=True))
|
|
61 |
|
62 |
```python
|
63 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
64 |
-
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stable-code-
|
65 |
model = AutoModelForCausalLM.from_pretrained(
|
66 |
-
"stabilityai/stable-code-
|
67 |
trust_remote_code=True,
|
68 |
torch_dtype="auto",
|
69 |
+ attn_implementation="flash_attention_2",
|
70 |
)
|
71 |
-
|
72 |
-
|
73 |
-
if torch.cuda.is_available():
|
74 |
-
device = "cuda"
|
75 |
-
|
76 |
-
inputs = tokenizer("<fim_prefix>def fib(n):<fim_suffix> else:\n return fib(n - 2) + fib(n - 1)<fim_middle>", return_tensors="pt").to("cuda")
|
77 |
tokens = model.generate(
|
78 |
**inputs,
|
79 |
max_new_tokens=48,
|
@@ -92,19 +84,15 @@ print(tokenizer.decode(tokens[0], skip_special_tokens=True))
|
|
92 |
|
93 |
```python
|
94 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
95 |
-
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stable-code-
|
96 |
model = AutoModelForCausalLM.from_pretrained(
|
97 |
-
"stabilityai/stable-code-
|
98 |
trust_remote_code=True,
|
99 |
torch_dtype="auto",
|
100 |
+ attn_implementation="flash_attention_2",
|
101 |
)
|
102 |
-
|
103 |
-
|
104 |
-
if torch.cuda.is_available():
|
105 |
-
device = "cuda"
|
106 |
-
|
107 |
-
inputs = tokenizer("import torch\nimport torch.nn as nn", return_tensors="pt").to("cuda")
|
108 |
tokens = model.generate(
|
109 |
**inputs,
|
110 |
max_new_tokens=48,
|
@@ -120,7 +108,7 @@ print(tokenizer.decode(tokens[0], skip_special_tokens=True))
|
|
120 |
## Model Details
|
121 |
|
122 |
* **Developed by**: [Stability AI](https://stability.ai/)
|
123 |
-
* **Model type**: `stable-code-
|
124 |
* **Language(s)**: English, Code
|
125 |
* **Library**: [GPT-NeoX](https://github.com/EleutherAI/gpt-neox)
|
126 |
* **License**: Other
|
@@ -149,7 +137,7 @@ The model is pre-trained on the aforementioned datasets in `bfloat16` precision,
|
|
149 |
|
150 |
### Training Infrastructure
|
151 |
|
152 |
-
* **Hardware**: `stable-code-
|
153 |
|
154 |
* **Software**: We use a fork of `gpt-neox` ([EleutherAI, 2021](https://github.com/EleutherAI/gpt-neox)), train under 2D parallelism (Data and Tensor Parallel) with ZeRO-1 ([Rajbhandari et al., 2019](https://arxiv.org/abs/1910.02054v3)), and rely on flash-attention as well as SwiGLU and Rotary Embedding kernels from FlashAttention-2 ([Dao et al., 2023](https://tridao.me/publications/flash2/flash2.pdf))
|
155 |
|
@@ -166,9 +154,9 @@ As a base model, this model may exhibit unreliable, unsafe, or other undesirable
|
|
166 |
## How to Cite
|
167 |
|
168 |
```bibtex
|
169 |
-
@misc{stable-code-
|
170 |
-
url={[https://huggingface.co/stabilityai/stable-code-
|
171 |
title={Stable Code 3B},
|
172 |
author={Pinnaparaju, Nikhil and Adithyan, Reshinth and Phung, Duy and Tow, Jonathan and Baicoianu, James and and Cooper, Nathan}
|
173 |
}
|
174 |
-
```
|
|
|
16 |
- code_eval
|
17 |
library_name: transformers
|
18 |
---
|
19 |
+
# `stable-code-3b`
|
20 |
|
21 |
## Model Description
|
22 |
|
23 |
+
`stable-code-3b` is a 2.7B billion parameter decoder-only language model pre-trained on 1.3 trillion tokens of diverse textual and code datasets. `stable-code-3b` is trained on nearly 20 programming languages (selected based on the 2023 StackOverflow Developer Survey) and demonstrates state-of-the-art performance (compared to models of similar size) on the MultiPL-E metrics across multiple programming languages tested using [BigCode's Evaluation Harness](https://github.com/bigcode-project/bigcode-evaluation-harness/tree/main).
|
24 |
|
25 |
**Key Features**
|
26 |
* Fill in Middle Capability (FIM)
|
|
|
28 |
|
29 |
## Usage
|
30 |
|
31 |
+
Get started generating text with `stable-code-3b` by using the following code snippet:
|
32 |
|
33 |
```python
|
34 |
import torch
|
35 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
36 |
+
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stable-code-3b", trust_remote_code=True)
|
37 |
model = AutoModelForCausalLM.from_pretrained(
|
38 |
+
"stabilityai/stable-code-3b",
|
39 |
trust_remote_code=True,
|
40 |
torch_dtype="auto",
|
41 |
)
|
42 |
+
model.cuda()
|
43 |
+
inputs = tokenizer("import torch\nimport torch.nn as nn", return_tensors="pt").to(model.device)
|
|
|
|
|
|
|
|
|
44 |
tokens = model.generate(
|
45 |
**inputs,
|
46 |
max_new_tokens=48,
|
|
|
57 |
|
58 |
```python
|
59 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
60 |
+
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stable-code-3b", trust_remote_code=True)
|
61 |
model = AutoModelForCausalLM.from_pretrained(
|
62 |
+
"stabilityai/stable-code-3b",
|
63 |
trust_remote_code=True,
|
64 |
torch_dtype="auto",
|
65 |
+ attn_implementation="flash_attention_2",
|
66 |
)
|
67 |
+
model.cuda()
|
68 |
+
inputs = tokenizer("<fim_prefix>def fib(n):<fim_suffix> else:\n return fib(n - 2) + fib(n - 1)<fim_middle>", return_tensors="pt").to(model.device)
|
|
|
|
|
|
|
|
|
69 |
tokens = model.generate(
|
70 |
**inputs,
|
71 |
max_new_tokens=48,
|
|
|
84 |
|
85 |
```python
|
86 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
87 |
+
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stable-code-3b", trust_remote_code=True)
|
88 |
model = AutoModelForCausalLM.from_pretrained(
|
89 |
+
"stabilityai/stable-code-3b",
|
90 |
trust_remote_code=True,
|
91 |
torch_dtype="auto",
|
92 |
+ attn_implementation="flash_attention_2",
|
93 |
)
|
94 |
+
model.cuda()
|
95 |
+
inputs = tokenizer("import torch\nimport torch.nn as nn", return_tensors="pt").to(model.device)
|
|
|
|
|
|
|
|
|
96 |
tokens = model.generate(
|
97 |
**inputs,
|
98 |
max_new_tokens=48,
|
|
|
108 |
## Model Details
|
109 |
|
110 |
* **Developed by**: [Stability AI](https://stability.ai/)
|
111 |
+
* **Model type**: `stable-code-3b` models are auto-regressive language models based on the transformer decoder architecture.
|
112 |
* **Language(s)**: English, Code
|
113 |
* **Library**: [GPT-NeoX](https://github.com/EleutherAI/gpt-neox)
|
114 |
* **License**: Other
|
|
|
137 |
|
138 |
### Training Infrastructure
|
139 |
|
140 |
+
* **Hardware**: `stable-code-3b` was trained on the Stability AI cluster across 256 NVIDIA A100 40GB GPUs (AWS P4d instances).
|
141 |
|
142 |
* **Software**: We use a fork of `gpt-neox` ([EleutherAI, 2021](https://github.com/EleutherAI/gpt-neox)), train under 2D parallelism (Data and Tensor Parallel) with ZeRO-1 ([Rajbhandari et al., 2019](https://arxiv.org/abs/1910.02054v3)), and rely on flash-attention as well as SwiGLU and Rotary Embedding kernels from FlashAttention-2 ([Dao et al., 2023](https://tridao.me/publications/flash2/flash2.pdf))
|
143 |
|
|
|
154 |
## How to Cite
|
155 |
|
156 |
```bibtex
|
157 |
+
@misc{stable-code-3b,
|
158 |
+
url={[https://huggingface.co/stabilityai/stable-code-3b](https://huggingface.co/stabilityai/stable-code-3b)},
|
159 |
title={Stable Code 3B},
|
160 |
author={Pinnaparaju, Nikhil and Adithyan, Reshinth and Phung, Duy and Tow, Jonathan and Baicoianu, James and and Cooper, Nathan}
|
161 |
}
|
162 |
+
```
|