Update README.md
Browse files
README.md
CHANGED
@@ -81,6 +81,50 @@ model-index:
|
|
81 |
This instruct tune demonstrates state-of-the-art performance (compared to models of similar size) on the MultiPL-E metrics across multiple programming languages tested using [BigCode's Evaluation Harness](https://github.com/bigcode-project/bigcode-evaluation-harness/tree/main), and on the code portions of
|
82 |
[MT Bench](https://klu.ai/glossary/mt-bench-eval)
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
## How to Cite
|
85 |
|
86 |
```bibtex
|
|
|
81 |
This instruct tune demonstrates state-of-the-art performance (compared to models of similar size) on the MultiPL-E metrics across multiple programming languages tested using [BigCode's Evaluation Harness](https://github.com/bigcode-project/bigcode-evaluation-harness/tree/main), and on the code portions of
|
82 |
[MT Bench](https://klu.ai/glossary/mt-bench-eval)
|
83 |
|
84 |
+
|
85 |
+
## Usage
|
86 |
+
Here's how you can run the model use the model:
|
87 |
+
|
88 |
+
```python
|
89 |
+
# pip install -U transformers
|
90 |
+
# pip install accelerate
|
91 |
+
|
92 |
+
import torch
|
93 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
94 |
+
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stable-code-instruct-3b", trust_remote_code=True)
|
95 |
+
model = AutoModelForCausalLM.from_pretrained("stabilityai/stable-code-instruct-3b", torch_dtype=torch.bfloat16, trust_remote_code=True)
|
96 |
+
model.eval()
|
97 |
+
model = model.cuda()
|
98 |
+
|
99 |
+
messages = [
|
100 |
+
{
|
101 |
+
"role": "system",
|
102 |
+
"content": "You are a helpful and polite assistant",
|
103 |
+
},
|
104 |
+
{
|
105 |
+
"role": "user",
|
106 |
+
"content": "Write a simple website in HTML. When a user clicks the button, it shows a random joke from a list of 4 jokes."
|
107 |
+
},
|
108 |
+
]
|
109 |
+
|
110 |
+
prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
|
111 |
+
|
112 |
+
inputs = tokenizer([prompt], return_tensors="pt").to(model.device)
|
113 |
+
|
114 |
+
tokens = model.generate(
|
115 |
+
**inputs,
|
116 |
+
max_new_tokens=1024,
|
117 |
+
temperature=0.5,
|
118 |
+
top_p=0.95,
|
119 |
+
top_k=100,
|
120 |
+
do_sample=True,
|
121 |
+
use_cache=True
|
122 |
+
)
|
123 |
+
|
124 |
+
output = tokenizer.batch_decode(tokens[:, inputs.input_ids.shape[-1]:], skip_special_tokens=False)[0]
|
125 |
+
```
|
126 |
+
|
127 |
+
|
128 |
## How to Cite
|
129 |
|
130 |
```bibtex
|