--- license: other language: - en tags: - causal-lm - code metrics: - code_eval library_name: transformers model-index: - name: stabilityai/stable-code-instruct-3b results: - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Python) metrics: - name: pass@1 type: pass@1 value: 32.4 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (C++) metrics: - name: pass@1 type: pass@1 value: 30.9 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Java) metrics: - name: pass@1 type: pass@1 value: 32.1 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (JavaScript) metrics: - name: pass@1 type: pass@1 value: 32.1 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (PHP) metrics: - name: pass@1 type: pass@1 value: 24.2 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Rust) metrics: - name: pass@1 type: pass@1 value: 23.0 verified: false --- # `stable-code-instruct-3b` ## Model Description `stable-code-instruct-3b` is a 2.7B billion parameter decoder-only language model tuned from [`stable-code-3b`](https://huggingface.co/stabilityai/stable-code-3b/). This model was trained on a mix of publicly available datasets, synthetic datasets using [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290). This instruct tune demonstrates state-of-the-art performance (compared to models of similar size) on the MultiPL-E metrics across multiple programming languages tested using [BigCode's Evaluation Harness](https://github.com/bigcode-project/bigcode-evaluation-harness/tree/main), and on the code portions of [MT Bench](https://klu.ai/glossary/mt-bench-eval) ## Usage Here's how you can run the model use the model: ```python # pip install -U transformers # pip install accelerate import torch from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("stabilityai/stable-code-instruct-3b", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("stabilityai/stable-code-instruct-3b", torch_dtype=torch.bfloat16, trust_remote_code=True) model.eval() model = model.cuda() messages = [ { "role": "system", "content": "You are a helpful and polite assistant", }, { "role": "user", "content": "Write a simple website in HTML. When a user clicks the button, it shows a random joke from a list of 4 jokes." }, ] prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) inputs = tokenizer([prompt], return_tensors="pt").to(model.device) tokens = model.generate( **inputs, max_new_tokens=1024, temperature=0.5, top_p=0.95, top_k=100, do_sample=True, use_cache=True ) output = tokenizer.batch_decode(tokens[:, inputs.input_ids.shape[-1]:], skip_special_tokens=False)[0] ``` ## Model Details * **Developed by**: [Stability AI](https://stability.ai/) * **Model type**: `Stable Code Instruct 3B` model is an auto-regressive language model based on the transformer decoder architecture. * **Language(s)**: English * **Paper**: [Stable Code Technical Report](https://drive.google.com/file/d/1JYJHszhS8EFChTbNAf8xmqhKjogWRrQF/view?usp=sharing) * **Library**: [Alignment Handbook](https://github.com/huggingface/alignment-handbook.git) * **Finetuned from model**: [https://huggingface.co/stabilityai/stable-code-3b](https://huggingface.co/stabilityai/stable-code-3b) * **License**: [StabilityAI Non-Commercial Research Community License](https://huggingface.co/stabilityai/stable-code-instruct-3b/blob/main/LICENSE). If you want to use this model for your commercial products or purposes, please contact us [here](https://stability.ai/contact) to learn more. * **Contact**: For questions and comments about the model, please email `lm@stability.ai` ## Performance ### Multi-PL Benchmark: | Model | Size | Avg | Python | C++ | JavaScript | Java | PHP | Rust | |------------------------------|------|------|--------|------|------------|------|------|------| | Codellama Instruct | 7B | 0.30 | 0.33 | 0.31 | 0.31 | 0.29 | 0.31 | 0.25 | | Deepseek Instruct | 1.3B | 0.44 | 0.52 | **0.52** | 0.41 | **0.46** | 0.45 | 0.28 | | Stable Code Instruct (SFT) | 3B | 0.44 | 0.55 | 0.45 | 0.42 | 0.42 | 0.44 | 0.32 | | Stable Code Instruct (DPO) | 3B | **0.47** | **0.59** | 0.49 | **0.49** | 0.44 | **0.45** | **0.37** | ### MT-Bench Coding: | Model | Size | Score | |-----------------------------|------|-----------------| | Stable Code Instruct (DPO) | 3B | 5.8 | | Stable Code Instruct (SFT) | 3B | 5.5 | | DeepSeek Coder | 1.3B | 4.6 | | CodeLlama Instruct | 7B | 3.55 | | DeepSeek Coder | 6.7B | 6.9 | | StarChat2 | 15B | 5.7 | ## How to Cite ```bibtex @misc{stable-code-instruct-3b, url={[https://huggingface.co/stabilityai/stable-code-3b](https://huggingface.co/stabilityai/stable-code-instruct-3b)}, title={Stable Code 3B}, author={Phung, Duy, and Pinnaparaju, Nikhil and Adithyan, Reshinth and Tow, Jonathan and Cooper, Nathan} } ```